Innovative technologies and traffic data sources provide great potential to extend advanced strategies and methods in travel behaviour research. Considering the increasing availability of real-time vehicle trajectory data and stimulated by the advances in the modelling and analysis of big data, this paper developed a hybrid unsupervised deep learning model to study driving bahaviour and risk patterns. The approach combines Autoencoder and Self-organized Maps (AESOM), to extract latent features and classify driving behaviour. The specialized neural networks are applied to data from 4032 observations collected from Global Positioning System (GPS) sensors in Shenzhen, China. In two case studies, improper vehicle lateral position maintenance, speeding and inconsistent or excessive acceleration and deceleration have been identified. The experiments have shown that back propagation through multi-layer autoencoders is effective for non-linear and multi-modal dimensionality reduction, giving low reconstruction errors from big GPS datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.