In recent years, the treatment of textile waste has attracted more and more attention around the world. The reuse of textile waste can contribute to the reduction of carbon emissions and the sustainable development of the economy. Herein, we proposed a facile and cost-effective approach to fabricating aerogel by using textile waste fibers as the matrix and polyvinyl alcohol (PVA) and glutaraldehyde (GA) as crosslinking agents. After being modified with methyltrimethoxysilane (MTMS) via chemical vapor deposition, both the interior and exterior of the textile waste aerogels exhibit a hydrophobic property with a water contact angle of up to 136.9° ± 2.3°. A comprehensive investigation of the structure, thermal properties, mechanical properties and oil absorption capacity of this aerogel shows its potential for building insulation and oil spill cleanup. The textile waste fibers aerogels have low density and high porosity, good thermal stability and outstanding heat insulation properties (Kavg. = 0.049–0.061 W/m·K). With a maximum oil absorption value of 26.9 ± 0.6 g/g and rapid and effective oil/water mixture separation, the aerogel exhibits competitive commercial application value.
In recent years, the treatment of textile waste has been attracted more and more attention around the world. The reuse of textile waste can contribute to the reduction of carbon emissions and the sustainable development of the economy. Herein, we proposed a facile and cost-effective approach to fabricating aerogel by using textile waste fibers as the matrix and polyvinyl alcohol (PVA) and glutaraldehyde (GA) as crosslinking agents. After coated with methyltrimethoxysilane (MTMS) via chemical vapor deposition, both the interior and exterior of the whole textile waste aerogels surface exhibit a super-hydrophobic property with a water contact angle of up to 136.9°. A comprehensive investigation of its structure, thermal performance and oil absorption capacity has been carried out for high-value applications such as building insulation and oil spill cleanup. The textile waste fibers aerogels have ultra-low density and high porosity, good thermal stability and outstanding heat insulation properties (K avg = 0.049–0.061 W/m·K). It has a competitive commercial application value that the maximum oil absorption value reaches 18.6 g/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.