The degradation of the carbon supports and high platinum (Pt) loading significantly hinder the wide adoption of proton exchange membrane fuel cells. In conventional electrodes, the ionomer binders introduce an undesirable, high oxygen‐transport resistance and cover the catalysts active sites. Herein, an advanced catalytic layer based on vertically aligned titanium nitride nanorod arrays (TiN NRs) is prepared, without additional ionomer or binders in the cathode. After supporting the thin‐film platinum–palladium–cobalt (PtPdCo) catalyst (Pt loading: 66.9 μm cm−2) onto TiN NRs, the ordered electrodes were investigated as the cathode of a single cell without additional ionomer in the catalytic layer. With this electrode architecture, the as‐synthesized electrode performs with a maximum power density of 390.5 mW cm−2 and cathode mass‐specific power density of 5.84 W mgPt−1. The 2000 potential cycles accelerated degradation test shows that the PtPdCo–TiN electrode is more stable than the commercial gas diffusion electrode.
Exploring cheap and stable electrocatalysts to replace Pt for the oxygen reduction reaction (ORR) is now the key issue for the large-scale application of fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.