Multiple myeloma (MM) is the most common cause of death from hematological malignancy worldwide, and recent studies have revealed that let-7b-5p can play an inhibitory role in tumorigenesis. However, the role of let-7b-5p in MM still remains unclear. The aim of this study was to elucidate the molecular mechanisms by which let-7b-5p acts as a tumor suppressor in MM. Here, quantitative real-time polymerase chain reaction results showed that the expression of let-7b-5p was remarkably reduced in MM tissues and MM cell lines (RPMI-8226 and U266 cells). Furthermore, over-expression of let-7b-5p significantly suppressed RPMI-8226 cell proliferation and induced S/G2 cell cycle arrest and apoptosis. Luciferase reporter assay results demonstrated that insulin-like growth factor receptor 1 (IGF1R) was negatively regulated by let-7b-5p at the post-transcriptional level. The mRNA and protein levels of IGF1R in RPMI-8226 cells were down-regulated by let-7b-5p. Furthermore, the cell phenotype altered by let-7b-5p inhibitor can be rescued by IGF1R silencing (si-IGF1R). Taken together, our results demonstrated that let-7b-5p functions as a tumor suppressor in MM, suggesting that let-7b-5p may be a potential therapeutic target for MM.
TKA can reduce knee pain, improve knee function, and improve the quality life in KBD patients. KBDQOL questionnaire may be a promising instrument for assessing the quality life in KBD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.