To improve the performance of Ad hoc on-demand multipath distance vector (AOMDV) protocol, we proposed NS-AOMDV which is short for "AOMDV based on node state". In NS-AOMDV, we introduce node state to improve AOMDV's performance in selecting main path. In route discovery process, the routing update rule calculates the node weight of each path and sorts the path weight by descending value in route list, and we choose the path which has the largest path weight for data transmission. NS-AOMDV also uses the technology of route request (RREQ) packet delay forwarding and energy threshold to ease network congestion, limit the RREQ broadcast storm, and avoid low energy nodes to participate in the establishment of the path. The results of simulation show that NS-AOMDV can effectively improve the networks' packets delivery rate, through put and normalized routing overhead in the situation of dynamic network topology and heavy load.
Background: Insulin controls hyperglycemia caused by diabetes, and virtually all treatments require exogenous insulin. However, the product's extensive post-translational modifications have hindered the manufacture of recombinant insulin. Result: Here we report a novel production method for a monomeric B22Asp desB30 insulin analog (B22D desB30 insulin). Its precursor, DPIP, is fused to an N-terminal chitin-binding domain and intein self-cleavage tag. The fusion protein is expressed and purified from E. coli and immobilized on chitin resins. DPIP is then released using an optimized pH shift and converted to mature insulin via trypsin digest. The resulting product appears monomeric, > 90% pure and devoid of any exogenous enzyme. Conclusion: Thus, biologically active insulin analog can be efficiently produced in bacteria and potentially applicable in the treatment of human diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.