Wireless sensing has been increasingly used in smart homes, human–computer interaction and other fields due to its comprehensive coverage, non-contact and absence of privacy leakage. However, most existing methods are based on the amplitude or phase of the Wi-Fi signal to recognize gestures, which provides insufficient recognition accuracy. To solve this problem, we have designed a deep spatiotemporal gesture recognition method based on Wi-Fi signals, namely Wi-GC. The gesture-sensitive antennas are selected first and the fixed antennas are denoised and smoothed using a combined filter. The consecutive gestures are then segmented using a time series difference algorithm. The segmented gesture data is fed into our proposed RAGRU model, where BAGRU extracts temporal features of Channel State Information (CSI) sequences and RNet18 extracts spatial features of CSI amplitudes. In addition, to pick out essential gesture features, we introduce an attention mechanism. Finally, the extracted spatial and temporal characteristics are fused and input into softmax for classification. We have extensively and thoroughly verified the Wi-GC method in a natural environment and the average gesture recognition rate of the Wi-GC way is between 92–95.6%, which has strong robustness.
With the new coronavirus raging around the world, home isolation has become an effective way to interrupt the spread of the virus. Effective monitoring of people in home isolation has also become a pressing issue. However, the large number of isolated people and the privatized isolated spaces pose challenges for traditional sensing techniques. Ubiquitous Wi-Fi offers new ideas for sensing people indoors. Advantages such as low cost, wide deployment, and high privacy make indoor human activity sensing technology based on Wi-Fi signals increasingly used. Therefore, this paper proposes a contactless indoor person continuous activity sensing method based on Wi-Fi signal Wi-CAS. The method allows for the sensing of continuous movements of home isolated persons. Wi-CAS designs an ensemble classification method based on Hierarchical Clustering (HEC) for the classification of different actions, which effectively improves the action classification accuracy while reducing the processing time. We have conducted extensive experimental evaluations in real home environments. By recording the activities of different people throughout the day, Wi-CAS is very sensitive to unusual activities of people and also has a combined activity recognition rate of 94.3%. The experimental results show that our proposed method provides a low-cost and highly robust solution for supervising the activities of home isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.