The vertical distribution pattern of the fine suspended sediment concentration (SSC) plays an important role in the aquatic ecosystem of shallow water. To investigate the SSC profile in submerged vegetated river flow, a series of indoor flume experiments was conducted. Glass spherical balls of three different diameters (40, 77, and 90 μm) with a uniform specific gravity of 2.5 were used for the model sediments. A set of sampling devices was designed for the simultaneous measurements of SSCs at multipoints along a vertical line. Experimental results show that the SSC profile was re-distributed in the vegetated region, gradually forming a new equilibrium pattern in the overcanopy flow layer with its maximum occurring near the canopy top. From this maximum point near the canopy top, the suspended sediment formed a dynamic balance between upward turbulent diffusion and downward gravitational settling. Meanwhile, the momentum diffusivity was observed to linearly decrease upward from the maximum-SSC elevation toward the water surface, thereby allowing us to deduce an empirical negative linear formula. Based on the convection-diffusion equilibrium mechanism and with assistance of the empirical formula of flow momentum diffusivity, a new form of the Rouse formula was derived for the overcanopy flow layer. In general, this equation agrees well with the measured data. Some undercalculated deviations appear in the well-above canopy zone due to the upskewed turbulence and the weak upward secondary flow. This deviation decreases with increasing sediment diameter. The bed deposition mainly comes from the deep part of canopy-occupied flow layer.
Soft foundation consolidation engineering applications and experimental studies have proven the effectiveness of the air–boosted vacuum preloading method (AVP). The sand well consolidation theory, a typical axisymmetric consolidation, is adapted to analyze the whole consolidation process of the saturated soil by air–boosted vacuum preloading. The present analytical solution for air–boosted vacuum consolidation of the saturated soil is more suitable for application in a deep soft foundation. With the solving method, the general solution through separation of variables is used, which is mathematically used for the homogeneous partial differential equations. However, the partial differential equations for solving the consolidation of the AVP method are nonhomogeneous. Therefore, the eigenfunction expansion method for nonhomogeneous equations is proposed and validated in this study. Results showed that the improved analytical solution by the eigenfunction expansion method is more consistent with the numerical solution than that of the previous method using the general solution by separation of variables, which leads to a lower error ratio of less than 2%. The improved analytical solution can be used to predict the consolidation of deep foundations by air–boosted vacuum preloading effectively.
The nature-based breakwater of floating emergent vegetation (BFEV) provides protection for water banks and various engineering structures from wave erosion. Compared with the convenient hard breakwater, the BFEV is beneficial to the resilient and sustainable development of rivers, lakes, coasts, and marine areas because it is free of new pollution. As a new breakwater, the unrevealed effect and efficiency of the BFEV on wave attenuation are to be investigated through a set of 312 physical tests in a rectangular indoor water flume in the present study. Results show that the wave height attenuates by 38–62%. Based on statistical methods, the main influencing factors of the wave transmitted coefficient (Ct) are found to be closely dependent on three conventional and newly proposed dimensionless parameters (λ1, λ2, λ3, λ4). Three conventional parameters include the wave orbital velocity, wave period, and the BFEV-width and stem spacing-based parameter (λ1, λ2), and the ratio of stem spacing to wave height (λ3). The newly proposed parameter (λ4) is the ratio of gravity to wave orbital acceleration, which is significantly positively related to the wave height attenuation. A multiple linear regression formula for Ct based on these four parameters is obtained with a high correlation coefficient of 0.958. This study is expected to supplement the wave attenuation data of this new breakwater and provide fundamental theory for the design and construction of the BFEV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.