BACKGROUND AND PURPOSENeuropeptide FF (NPFF) behaves as an endogenous opioid-modulating peptide. In the present study, the opioid and NPFF pharmacophore-containing chimeric peptide BN-9 was synthesized and pharmacologically characterized.
EXPERIMENTAL APPROACHAgonist activities of BN-9 at opioid and NPFF receptors were characterized in in vitro cAMP assays. Antinociceptive activities of BN-9 were evaluated in the mouse tail-flick and formalin tests. Furthermore, its side effects were investigated in rotarod, antinociceptive tolerance, reward and gastrointestinal transit tests.
KEY RESULTSBN-9 acted as a novel multifunctional agonist at μ, δ, κ, NPFF1 and NPFF2 receptors in cAMP assays. In the tail-flick test, BN-9 produced dose-related antinociception and was approximately equipotent to morphine; this antinociception was blocked by μ and κ receptor antagonists, but not by the δ receptor antagonist. In the formalin test, supraspinal administration of BN-9 produced significant analgesia. Notably, repeated administration of BN-9 produced analgesia without loss of potency over 8 days. In contrast, repeated i.c.v. co-administration of BN-9 with the NPFF receptor antagonist RF9 produced significant antinociceptive tolerance. Furthermore, i.c.v. BN-9 induced conditioned place preference. When given by the same routes, BN-9 had a more than eightfold higher ED 50 value for gastrointestinal transit inhibition compared with the ED 50 values for antinociception.
CONCLUSIONS AND IMPLICATIONSBN-9 produced a robust, nontolerance-forming analgesia with limited inhibition of gastrointestinal transit. As BN-9 is able to activate both opioid and NPFF systems, this provides an interesting approach for the development of novel analgesics with minimal side effects.
A new class of endomorphin-1 (EM-1) analogues were synthesized by introduction of novel unnatural α-methylene-β-amino acids (Map) at position 3 or/and position 4. Their binding and functional activity, metabolic stability, and antinociceptive activity were determined and compared. Most of these analogues showed high affinities for the μ-opioid receptor and an increased stability in mouse brain homogenates compared with EM-1. Examination of cAMP accumulation and ERK1/2 phosphorylation in HEK293 cells confirmed the agonist properties of these analogues. Among these new analogues, H-Tyr-Pro-Trp-(2-furyl)Map-NH(2) (analogue 12) exhibited the highest binding potency (K(i)(μ) = 0.221 nM) and efficacy (EC(50) = 0.0334 nM, E(max) = 97.14%). This analogue also displayed enhanced antinociceptive activity in vivo in comparison to EM-1. Molecular modeling approaches were then carried out to demonstrate the interaction pattern of these analogues with the opioid receptors. We found that, compared to EM-1, the incorporation of our synthesized Map at position 4 would bring the analogue to a closer binding mode with the μ-opioid receptor.
We present herein for the first time the synthesis and preliminary biological evaluation of various modified chromanes via a rosin-derived tertiary amine-thiourea-catalyzed highly enantioselective Friedel-Crafts alkylation reaction.
Recently we reported the synthesis and structure-activity study of endomorphin-1 (EM-1) analogues containing novel, unnatural α-methylene-β-aminopropanoic acids (Map). In the present study, we describe new EM-1 analogues containing Dmt(1), (R/S)-βPro(2), and (ph)Map(4)/(2-furyl)Map(4). All of the analogues showed a high affinity for the μ-opioid receptor (MOR) and increased stability in mouse brain homogenates. Of the new compounds, Dmt(1)-(R)-βPro(2)-Trp(3)-(2-furyl)Map(4) (analogue 12) displayed the highest affinity toward MOR, in the picomolar range (Ki(μ) = 3.72 pM). Forskolin-induced cAMP accumulation assays indicated that this analogue displayed an extremely high agonistic potency, in the subpicomolar range (EC50 = 0.0421 pM, Emax = 99.5%). This compound also displayed stronger in vivo antinociceptive activity after iv administration when compared to morphine in the tail-flick test, which indicates that this analogue was able to cross the blood-brain barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.