Background When applying secondary analysis on published survival data, it is critical to obtain each patient’s raw data, because the individual patient data (IPD) approach has been considered as the gold standard of data analysis. However, researchers often lack access to IPD. We aim to propose a straightforward and robust approach to obtain IPD from published survival curves with a user-friendly software platform. Results Improving upon existing methods, we propose an easy-to-use, two-stage approach to reconstruct IPD from published Kaplan-Meier (K-M) curves. Stage 1 extracts raw data coordinates and Stage 2 reconstructs IPD using the proposed method. To facilitate the use of the proposed method, we developed the R package IPDfromKM and an accompanying web-based Shiny application. Both the R package and Shiny application have an “all-in-one” feature such that users can use them to extract raw data coordinates from published K-M curves, reconstruct IPD from the extracted data coordinates, visualize the reconstructed IPD, assess the accuracy of the reconstruction, and perform secondary analysis on the basis of the reconstructed IPD. We illustrate the use of the R package and the Shiny application with K-M curves from published studies. Extensive simulations and real-world data applications demonstrate that the proposed method has high accuracy and great reliability in estimating the number of events, number of patients at risk, survival probabilities, median survival times, and hazard ratios. Conclusions IPDfromKM has great flexibility and accuracy to reconstruct IPD from published K-M curves with different shapes. We believe that the R package and the Shiny application will greatly facilitate the potential use of quality IPD and advance the use of secondary data to facilitate informed decision making in medical research.
PURPOSE For immunotherapy, such as checkpoint inhibitors and chimeric antigen receptor T-cell therapy, where the efficacy does not necessarily increase with the dose, the maximum tolerated dose may not be the optimal dose for treating patients. For these novel therapies, the objective of dose-finding trials is to identify the optimal biologic dose (OBD) that optimizes patients’ risk-benefit trade-off. METHODS We propose a simple and flexible Bayesian optimal interval phase I/II (BOIN12) trial design to find the OBD that optimizes the risk-benefit trade-off. The BOIN12 design makes the decision of dose escalation and de-escalation by simultaneously taking account of efficacy and toxicity and adaptively allocates patients to the dose that optimizes the toxicity-efficacy trade-off. We performed simulation studies to evaluate the performance of the BOIN12 design. RESULTS Compared with existing phase I/II dose-finding designs, the BOIN12 design is simpler to implement, has higher accuracy to identify the OBD, and allocates more patients to the OBD. One of the most appealing features of the BOIN12 design is that its adaptation rule can be pretabulated and included in the protocol. During the trial conduct, clinicians can simply look up the decision table to allocate patients to a dose without complicated computation. CONCLUSION The BOIN12 design is simple to implement and yields desirable operating characteristics. It overcomes the computational and implementation complexity that plagues existing Bayesian phase I/II dose-finding designs and provides a useful design to optimize the dose of immunotherapy and targeted therapy. User-friendly software is freely available to facilitate the application of the BOIN12 design.
In the era of targeted therapy and immunotherapy, the objective of dose finding is often to identify the optimal biological dose (OBD), rather than the maximum tolerated dose. We develop a utility‐based Bayesian optimal interval (U‐BOIN) phase I/II design to find the OBD. We jointly model toxicity and efficacy using a multinomial‐Dirichlet model, and employ a utility function to measure dose risk‐benefit trade‐off. The U‐BOIN design consists of two seamless stages. In stage I, the Bayesian optimal interval design is used to quickly explore the dose space and collect preliminary toxicity and efficacy data. In stage II, we continuously update the posterior estimate of the utility for each dose after each cohort, using accumulating efficacy and toxicity from both stages I and II, and then use the posterior estimate to direct the dose assignment and selection. Compared to existing phase I/II designs, one prominent advantage of the U‐BOIN design is its simplicity for implementation. Once the trial is designed, it can be easily applied using predetermined decision tables, without complex model fitting and estimation. Our simulation study shows that, despite its simplicity, the U‐BOIN design is robust and has high accuracy to identify the OBD. We extend the design to accommodate delayed efficacy by leveraging the short‐term endpoint (eg, immune activity or other biological activity of targeted agents), and using it to predict the delayed efficacy outcome to facilitate real‐time decision making. A user‐friendly software to implement the U‐BOIN is freely available at www.trialdesign.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.