Many people die each year in the world in single vehicle roadway departure crashes caused by driver inattention, especially on the freeway. Lane Departure Warning System (LDWS) is a useful system to avoid those accident, in which, the lane detection is a key issue. In this paper, after a brief overview of existing methods, we present a robust lane detection algorithm based on geometrical model and Gabor filter. This algorithm is based on two assumptions: the road in front of vehicle is approximately planar and marked which are often correct on the highway and freeway where most lane departure accidents happen [1]. The lane geometrical model we build in this paper contains four parameters which are starting position, lane original orientation, lane width and lane curvature. The algorithm is composed of three stages: the first stage is called off-line calibration which just runs once after the camera is mounted and fixed in the vehicle. The parameters of camera used for lane detection is accurately estimated by the 2D calibration method [2]; The second stage is called lane model parameters estimation and lane model candidates construction, the first three parameters, starting position, lane original orientation and lane width will be estimated using dominant orientation estimation [3] and local Hough transform. Then the construction of lane model candidates is implemented for the final lane model matching; the third stage is model matching. The proposed lane module matching algorithm is implemented to match the best fitted lane model. The combination of these modules can overcome the universal lane detection problems due to inaccuracies in edge detection such as shadow of tree and passengers on the road. Experimental results on real road will be presented to prove the effectiveness of the proposed lane detection algorithm.
In this paper, we propose a novel, efficient stereo visual-odometry algorithm for ground vehicles moving in outdoor environments. To avoid the drawbacks of computationally-expensive outlier-removal steps based on random-sample schemes, we use a single-degree-of-freedom kinematic model of the vehicle to initialize an Iterative Closest Point (ICP) algorithm that is utilized to select high-quality inliers. The motion is then computed incrementally from the inliers using a standard linear 3D-to-2D pose-estimation method without any additional batch optimization. The performance of the approach is evaluated against state-of-the-art methods on both synthetic data and publicly-available datasets (e.g., KITTI and Devon Island) collected over several kilometers in both urban environments and challenging off-road terrains. Experiments show that the our algorithm outperforms state-of-the-art approaches in accuracy, runtime, and ease of implementation. Abstract-In this paper, we propose a novel, efficient stereo visual-odometry algorithm for ground vehicles moving in outdoor environments. To avoid the drawbacks of computationallyexpensive outlier-removal steps based on random-sample schemes, we use a single-degree-of-freedom kinematic model of the vehicle to initialize an Iterative Closest Point (ICP) algorithm that is utilized to select high-quality inliers. The motion is then computed incrementally from the inliers using a standard linear 3D-to-2D pose-estimation method without any additional batch optimization. The performance of the approach is evaluated against state-of-the-art methods on both synthetic data and publicly-available datasets (e.g., KITTI and Devon Island) collected over several kilometers in both urban environments and challenging off-road terrains. Experiments show that the our algorithm outperforms state-of-the-art approaches in accuracy, runtime, and ease of implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.