Background
Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium.
Methods
hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague–Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests.
Results
hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group.
Conclusions
PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.
Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA treatment with hAMSC transplantation. Forty‐five Sprague‐Dawley female rats were randomly divided into the sham operation, IUA, IUA + E2, IUA + hAMSCs and IUA + hAMSCs + E2 groups. After IUA induction in the rats, hAMSCs promoted endometrial regeneration and repair via differentiation into endometrial epithelial cells. In all groups, the expression of key proteins in Notch signalling was detected in the uterus by immunohistochemistry. The results indicated Notch signalling activation in the hAMSCs and hAMSCs + E2 groups. We could also induce hAMSC differentiation to generate endometrial epithelial cells in vitro. Furthermore, the inhibition of Notch signalling using the AdR‐dnNotch1 vector suppressed hAMSC differentiation (assessed by epithelial and mesenchymal marker levels), whereas its activation using the AdR‐Jagged1 vector increased differentiation. The above findings indicate Notch signalling mediates the differentiation of hAMSCs into endometrial epithelial cells, thus promoting endometrial regeneration and repair; Notch signalling could have an important function in IUA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.