There are different polarization states of macrophages, including the classically activated M1 phenotype and the alternatively activated M2 phenotype. These have different functions in the inflammation process. Activating transcription factor 3 (ATF3) is a key transcriptional regulator that inhibits the inflammatory response. However, the effects of ATF3 on migration and anti‑inflammatory control mechanisms of macrophages have not been thoroughly investigated. The present study investigated the effect of ATF3 on macrophage migration and M1/M2 polarization. Results revealed that overexpression of ATF3 promoted macrophage migration and the expression of the M2 phenotype markers [cluster of differentiation (CD) 163, mannose receptor C type 1, arginase 1 and peroxisome proliferator‑activated receptor γ] and inhibited expression of the M1 phenotype markers (monocyte chemoattractant protein‑1, inducible nitric oxide synthase, CD16 and tumor necrosis factor‑α), whereas knockdown of ATF3 resulted in a contrary effect. In addition, the wingless‑type MMTV integration site family member (Wnt)/β‑catenin signaling pathway was activated and the expression level of tenascin (TNC) was significantly upregulated by overexpression of ATF3. Additionally, inhibition of Wnt/β‑catenin signaling significantly attenuated the upregulatory effect of ATF3 on TNC. Finally, the effect of ATF3 on macrophage migration and markers of the M1 or M2 state was investigated using TNC‑specific siRNA. In conclusion, the results of the present study suggested that ATF3 promotes macrophage migration and reverses M1‑polarized macrophages to the M2 phenotype by upregulation of TNC via the Wnt/β‑catenin signaling pathway.
Sex differences exist in the regulation of adult neurogenesis in the hippocampus in response to hormones and cognitive training. Here we investigated the trajectory and maturation rate of adult-born neurons in the dentate gyrus (DG) of male and female rats. Sprague-Dawley rats were perfused two hours, 24 hours, one, two or three weeks after BrdU injection, a DNA synthesis marker that labels dividing progenitor cells and their progeny. Adult-born neurons (BrdU/NeuN-ir) matured faster in males compared to females. Males had a greater density of neural stem cells (Sox2-ir) in the dorsal, but not in the ventral, DG and had higher levels of cell proliferation (Ki67-ir) than non-proestrous females. However, males showed a greater reduction in neurogenesis between one and two weeks after mitosis, whereas females showed similar levels of neurogenesis throughout the weeks. The faster maturation and greater attrition of new neurons in males compared to females suggests greater potential for neurogenesis to respond to external stimuli in males and emphasizes the importance of studying sex on adult hippocampal neurogenesis. Significance Statement Previously studies examining the characteristics of adult-born neurons in the dentate gyrus have used almost exclusively male subjects. Researchers have assumed the two sexes have a similar maturation and attrition of new neurons in the dentate gyrus of adults. However, this study highlights notable sex differences in the attrition, maturation rate and potential of neurogenesis in the adult hippocampus that has significant implications for the field of neuroplasticity. These findings are important in understanding the relevance of sex differences in the regulation of neurogenesis in the hippocampus in response to stimuli or experience and may have consequences for our understanding of diseases that involve neurodegeneration of the hippocampus, particularly those that involve sex differences, such as Alzheimer's disease and depression.
Background/Aims: Circular RNAs (circRNAs) are a class of long noncoding RNAs with a closed loop structure that regulate gene expression as microRNA sponges. CircRNAs are more enriched in brain tissue, but knowledge of the role of circRNAs in temporal lobe epilepsy (TLE) has remained limited. This study is the first to identify the global expression profiles and characteristics of circRNAs in human temporal cortex tissue from TLE patients. Methods: Temporal cortices were collected from 17 TLE patients and 17 non-TLE patients. Total RNA was isolated, and high-throughput sequencing was used to profile the transcriptome of dysregulated circRNAs. Quantitative PCR was performed for the validation of changed circRNAs. Results: In total, 78983 circRNAs, including 15.29% known and 84.71% novel circRNAs, were detected in this study. Intriguingly, 442 circRNAs were differentially expressed between the TLE and non-TLE groups (fold change≥2.0 and FDR≤0.05). Of these circRNAs, 188 were up-regulated, and 254 were down-regulated in the TLE patient group. Eight circRNAs were validated by real-time PCR. Remarkably, circ-EFCAB2 was intensely up-regulated, while circ-DROSHA expression was significantly lower in the TLE group than in the non-TLE group (P<0.05). Bioinformatic analysis revealed that circ-EFCAB2 binds to miR-485-5p to increase the expression level of the ion channel CLCN6, while circ-DROSHA interacts with miR-1252-5p to decrease the expression level of ATP1A2. Conclusions: The dysregulations of circRNAs may reflect the pathogenesis of TLE and circ-EFCAB2 and circ-DROSHA might be potential therapeutic targets and biomarkers in TLE patients.
Secretory trafficking through the Golgi complex is critical for neuronal development, function, and stress response. Altered secretion is associated with the pathogenesis of various neurological diseases. We found that c-Jun amino-terminal kinase 3 (JNK3) inhibited secretory trafficking by promoting the depletion of phosphatidylinositol 4-phosphate (PI4P) in the Golgi complex of COS7 cells and primary rat neurons. Exposure of cultured primary rat neurons to excitotoxic concentrations of NMDA (N-methyl-d-aspartate), an agonist of a class of ionotropic glutamate receptors, or overexpression of zD17 (a palmitoyl transferase) resulted in JNK3 palmitoylation and association with the Golgi complex. Analysis of mutant constructs of JNK3 indicated that Golgi association was independent of its kinase activity but depended on its palmitoylation. The association of JNK3 with the Golgi in cultured neurons decreased the secretory trafficking of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 (glutamate receptor subunit 1), a component of ionotropic glutamate receptors found at glutamatergic synapses. Palmitoylated JNK3 bound to the phosphatase Sac1, increasing its abundance at the Golgi and thereby decreasing the abundance of PI4P, a lipid necessary for post-Golgi trafficking. Disrupting the JNK3-Sac1 interaction with two synthetic peptides prevented the loss of surface GluR1 and preserved synaptic integrity in cultured neurons exposed to NMDA. Together, our results suggest that JNK3 participates in an adaptive response to neuronal hyperexcitation by impeding secretory trafficking at the Golgi complex.
Genomic imprinting is a complex genetic and epigenetic phenomenon that plays important roles in mammalian development and diseases. Mammalian imprinted genes have been identified widely by experimental strategies or predicted using computational methods. Systematic information for these genes would be necessary for the identification of novel imprinted genes and the analysis of their regulatory mechanisms and functions. Here, a well-designed information repository, MetaImprint (http://bioinfo.hrbmu.edu.cn/ MetaImprint), is presented, which focuses on the collection of information concerning mammalian imprinted genes. The current version of MetaImprint incorporates 539 imprinted genes, including 255 experimentally confirmed genes, and their detailed research courses from eight mammalian species. MetaImprint also hosts genome-wide genetic and epigenetic information of imprinted genes, including imprinting control regions, single nucleotide polymorphisms, non-coding RNAs, DNA methylation and histone modifications. Information related to human diseases and functional annotation was also integrated into MetaImprint. To facilitate data extraction, MetaImprint supports multiple search options, such as by gene ID and disease name. Moreover, a configurable Imprinted Gene Browser was developed to visualize the information on imprinted genes in a genomic context. In addition, an Epigenetic Changes Analysis Tool is provided for online analysis of DNA methylation and histone modification differences of imprinted genes among multiple tissues and cell types. MetaImprint provides a comprehensive information repository of imprinted genes, allowing researchers to investigate systematically the genetic and epigenetic regulatory mechanisms of imprinted genes and their functions in development and diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.