We report on observations of random lasers with coherent feedback in highly transparent polymer films embedded with silver nanoparticles. The hybrid materials were fabricated via in situ synthesis method, through which silver nanoparticles were precipitated by thermal treatment. Sharp peaks with linewidth ϳ0.5 nm were observed to emerge on the broad emission background when the pump energy reached a threshold, together with unidirectional laser irradiation. Random lasers with coherent feedback induced by silver nanoparticles have been rarely reported, hence, we expect that this work will add an aspect to random lasers by using metal nanostructures to obtain coherent feedback.
A comparative study of the crystal and electronic structure and magnetism of divalent europium perovskite oxides EuMO(3) (M = Ti, Zr, and Hf) has been performed on the basis of both experimental and theoretical approaches playing complementary roles. The compounds were synthesized via solid-state reactions. EuZrO(3) and EuHfO(3) have an orthorhombic structure with a space group Pbnm at room temperature contrary to EuTiO(3), which is cubic at room temperature. The optical band gaps of EuZrO(3) and EuHfO(3) are found to be about 2.4 and 2.7 eV, respectively, much larger than that of EuTiO(3) (0.8 eV). On the other hand, the present compounds exhibit similar magnetic properties characterized by paramagnetic-antiferromagnetic transitions at around 5 K, spin flop at moderate magnetic fields lower than 1 T, and the antiferromagnetic nearest-neighbor and ferromagnetic next-nearest-neighbor exchange interactions. First-principles calculations based on a hybrid Hartree-Fock density functional approach yield lattice constants, band gaps, and magnetic interactions in good agreement with those obtained experimentally. The band gap excitations are assigned to electronic transitions from the Eu 4f to Mnd states for EuMO(3) (M = Ti, Zr, and Hf and n = 3, 4, and 5, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.