Polymer nanocomposites with high energy density and low dielectric loss are highly desirable in electronic and electric industry. Achieving the ability to tailor the interface between polymer and nanoparticle is the key issue to realize desirable dielectric properties and high energy density in the nanocomposites. However, the understanding of the role of interface on the dielectric properties and energy density of polymer nanocomposites is still very poor. In this work, we report a novel strategy to improve the interface between the high dielectric constant nanoparticles (i.e., BaTiO3) and ferroelectric polymer [i.e., poly(vinylidene fluoride-co-hexafluoro propylene)]. Core–shell structured BaTiO3 nanoparticles either with different shell thickness or with different molecular structure of the shell were prepared by grafting two types of fluoroalkyl acrylate monomers via surface-initiated reversible addition–fragmentation chain transfer (RAFT) polymerization. The dielectric properties and energy storage capability of the corresponding nanocomposites were investigated by broadband dielectric spectroscopy and electric displacement-electric field loop measurement, respectively. The results show that high energy density and low dielectric loss are successfully realized in the nanocomposites. Moreover, the energy storage densities of the P(VDF-HFP)-based nanocomposites could be tailored by adjusting the structure and thickness of the fluoro-polymer shell. The approach described is applicable to a wide range of nanoparticles and polymer matrix, thereby providing a new route for preparing polymer-based nanocomposites used in electronic and electric industry.
Polymer nanocomposites with high dielectric constant have extensive applications in the electronic and electrical industry because of ease of processing and low cost. Blending and in situ polymerization are two conventional methods for the preparation of polymer nanocomposites. However, the resulting nanocomposites, particularly highly filled nanocomposites, generally have some disadvantages such as high dielectric loss and low dielectric constant and thus show low energy density and low energy efficiency. Here we developed a core@double-shell strategy to prepare barium titanate (BT)-based high performance polymer nanocomposites, in which the first shell is hyperbranched aromatic polyamide (HBP) and the second shell is poly(methyl methacrylate) (PMMA). This method utilized the advantages of both polymer shells, resulting in superior dielectric property which cannot be achieved in nanocomposites prepared by the conventional blending methods. It is found that, compared with the conventional solution blended BT/PMMA nanocomposites, the core@double-shell structured BT@HBP@PMMA nanocomposites had higher dielectric constant and lower dielectric loss. The energy densities of BT@HBP@PMMA nanocomposites were higher than that of BT/PMMA nanocomposites accordingly. The dielectric response of the nanocomposites was analyzed, and the mechanisms resulting in the higher dielectric constant and lower dielectric loss in BT@HBP@PMMA nanocomposites were proposed. This study suggests that the core@double-shell strategy shows strong potential for preparing polymer nanocomposites with desirable dielectric properties.
Polymer nanocomposites with the dielectric constant comparable to that of percolative composites are successfully prepared by using core-shell structured hyperbranched aromatic polyamide grafted barium titanate (BT-HBP) hybrid nanofiller. Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) was used as the polymer matrix because of its high intrinsic dielectric constant and easy processability. The BT-HBP hybrid nanofiller were prepared by a solution polymerization of diaminobenzoic acid on the surface of amino-funcationalized BT nanoparticles. Nuclear magnetic resonance ((1)H NMR) and transmission electron microscopy (TEM) were used to verify the chemical structure of the hyperbranched aromatic polyamide and core-shell structure of the hybrid filler, respectively. It was found that the nanocomposite with 40 vol % BaTiO3-HBP had a dielectric constant of 1485.5 at 1000 Hz, whereas the corresponding nanocomposite sample with untreated BaTiO3 only showed a dielectric constant of 206.3. Compared with classic percolative composites, the advantage of the PVDF-TrFE-CFE/BaTiO3-HBP nanocomposites is that the composites show high enough breakdown strength and high dielectric constant simultaneously. An enhanced interfacial polarization mechanism between the BT-HBP and the polymer matrix was suggested for understanding the observed unusually high dielectric constant.
The urgent demand of high energy density and high power density devices has triggered significant interest in high dielectric constant (high-k) flexible nanocomposites comprising dielectric polymer and high-k inorganic nanofiller. However, the large electrical mismatch between polymer and nanofiller usually leads to earlier electric failure of the nanocomposites, resulting in an undesirable decrease of electrical energy storage capability. A few studies show that the introduction of moderate-k shell onto a high-k nanofiller surface can decrease the dielectric constant mismatch, and thus, the corresponding nanocomposites can withstand high electric field. Unfortunately, the low apparent dielectric enhancement of the nanocomposites and high electrical conductivity mismatch between matrix and nanofiller still result in low energy density and low efficiency. In this study, it is demonstrated that encapsulating moderate-k nanofiller with high-k but low electrical conductivity shell is effective to significantly enhance the energy storage capability of dielectric polymer nanocomposites. Specifically, using BaTiO nanoparticles encapsulated TiO (BaTiO@TiO) core-shell nanowires as filler, the corresponding poly(vinylidene fluoride-co-hexafluoropylene) nanocomposites exhibit superior energy storage capability in comparison with the nanocomposites filled by either BaTiO or TiO nanowires. The nanocomposite film with 5 wt % BaTiO@TiO nanowires possesses an ultrahigh discharged energy density of 9.95 J cm at 500 MV m, much higher than that of commercial biaxial-oriented polypropylene (BOPP) (3.56 J cm at 600 MV m). This new strategy and corresponding results presented here provide new insights into the design of dielectric polymer nanocomposites with high electrical energy storage capability.
This work reports the advances of utilizing a core@double-shell nanostructure to enhance the electrical energy storage capability and suppress the dielectric loss of polymer nanocomposites. Two types of core@double-shell barium titanate (BaTiO3) matrix-free nanocomposites were prepared using a surface initiated atom transfer radical polymerization (ATRP) method to graft a poly(2-hydroxylethyle methacrylate)-block-poly(methyl methacrylate) and sodium polyacrylate-block-poly(2-hydroxylethyle methacrylate) block copolymer from BaTiO3 nanoparticles. The inner shell polymer is chosen to have either high dielectric constant or high electrical conductivity to provide large polarization, while the encapsulating outer shell polymer is chosen to be more insulating as to maintain a large resistivity and low loss. Finite element modeling was conducted to investigate the dielectric properties of the fabricated nanocomposites and the relaxation behavior of the grafted polymer. It demonstrates that confinement of the more conductive (lossy) phase in this multishell nanostructure is the key to achieving a high dielectric constant and maintaining a low loss. This promising multishell strategy could be generalized to a variety of polymers to develop novel nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.