Corneal blindness is a common phenomenon, and corneal transplantation is an effective treatment for corneal defects. However, there is usually a mismatch between the corneal repair material and the degree of the patient’s corneal defect. Therefore, patients with different corneal defects need suitable corneal repair materials with a specific microstructure for personalized treatment. In this research, collagen films with bionic structures were fabricated through ethanol evaporation technique by regulating the volume ratios of collagen solution: ethanol = 10:0(Col)/9:1(CC91)/8:2(CC82)/CC73(CC73). Under various preparation conditions, the obtained collagen films contain layered structures of different density. SEM photos show that the CC73 film with a dense layer arrangement has a microstructure similar to that of the corneal epithelial layer, whereas the Col film has a loose layered structure similar to that of the corneal stroma layer. Four kinds of collagen films showed different optical properties and water absorption ability. A more ordered arrangement of internal layer structure leads to better mechanical properties of the collagen film. In view of this, we think that these collagen films with different microstructures and different interlayer spacing may have huge potential applications for personalized corneal repair.
Corneal defects can seriously affect human vision, and keratoplasty is the most widely accepted therapy method for visual rehabilitation. Currently, effective treatment for clinical patients has been restricted due to a serious shortage of donated cornea tissue and high-quality artificial repair materials. As the predominant component of cornea tissue, collagen-based materials have promising applications for corneal repair. However, the corneal nerve repair and epithelization process after corneal transplantation must be improved. This research proposes a new collagen-based scaffold with good biocompatibility and biological functionality enhanced by surface chemical grafting of natural taurine molecular. The chemical composition of collagen-taurine (Col-Tau) material is evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and its hydrophilic properties, light transmittance, swelling performance and mechanical tensile properties have been measured. The research results indicate that the Col-Tau sample has high transmittance and good mechanical properties, and exhibits excellent capacity to promote corneal nerve cell growth and the epithelization process of corneal epithelial cells. This novel Col-Tau material, which can be easily prepared at a low cost, should have significant application potential for the treating corneal disease in the future.
Blindness is frequently caused by corneal abnormalities, and corneal transplantation is the most effective treatment method. It is extremely important to develop high-quality artificial corneas because there are not enough donor corneas accessible for cornea transplantation. One of the most-often utilized materials is collagen, which is the primary component of natural cornea. Collagen-based corneal repair materials have good physicochemical properties and excellent biocompatibility, but how to promote the regeneration of the corneal nerve after keratoplasty is still a big challenge. In this research, in order to promote the growth of nerve cells on a collagen (Col) substrate, a novel collagen-based material was synthesized starting from the functionalization of collagen with unsaturated methacryloyl groups that three-dimensionally photopolymerize to a 3D network of chemically crosslinked collagen (ColMA), onto which taurine molecules were eventually grafted (ColMA-Tr). The physicochemical properties and biocompatibility of the Col, ColMA and ColMA-Tr films were evaluated. By analyzing the results, we found that all the three samples had good moisture retention and aq high covalent attachment of methacryloyl groups followed by their photopolymerization improved the mechanical properties of the ColMA and ColMA-Tr. Most importantly, compared with ColMA, the taurine-modified collagen-MA film significantly promoted the growth of nerve cells and corneal epithelial cells on its surface. Our preliminary results suggest that this novel ColMA-Tr film may have potential use in cornea tissue engineering in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.