Metallacyclic cores provide a scaffold upon which pendant functionalities can be organized to direct the formation of dimensionally controllable nanostructures. Because of the modularity of coordination-driven self-assembly, the properties of a given supramolecular core can be readily tuned, which has a significant effect on the resulting nanostructured material. Herein we report the efficient preparation of two amphiphilic rhomboids that can subsequently order into 0D micelles, 1D nanofibers, or 2D nanoribbons. This structural diversity is enforced by three parameters: the nature of the hydrophilic moieties decorating the parent rhomboids, the concentration of precursors during self-assembly, and the reaction duration. These nanoscopic constructs further interact to generate metallohydrogels at high concentrations, driven by intermolecular hydrophobic and π-π interactions, demonstrating the utility of coordination-driven self-assembly as a first-order structural element for the hierarchical design of functional soft materials.
Treatment of Ti(NMe(2))(2)(dpma) (1) with aniline results in the protonation of the dimethylamido ligands, which are retained as dimethylamines, and generation of a titanium imido complex Ti(NPh)(NHMe(2))(2)(dpma) (2) in 94% yield. The monomeric imido 2 is converted to the reactive dimeric micro-imido [Ti(NPh)(dpma)](2) (3) on removal of the labile dimethylamine donors. The dimer 3 is converted to monomeric terminal imido complexes in the presence of added donors, e.g., 4,4'-di-tert-butyl-2,2'-bipyridine (Bu(t)-bpy) and DME. Compounds 1-3 exhibit the same rate constant for 1-phenylpropyne hydroamination by aniline and are all kinetically competent to be involved in the catalytic cycle. Attempts to use 1 as a catalyst for hydroaminations involving 1,1-dimethylhydrazine resulted in only a few turnovers under the best conditions. Consequently, the chemistry of 1 with hydrazines to generate hydrazido complexes was scrutinized for comparison with the imido species. Through these studies, titanium hydrazido complexes including Ti(eta(2)-NHNC(5)H(10))(2)(dpma) (5), Ti(eta(2)-NHNMe(2))(2)(dpma) (6), and [Ti(micro:eta(1),eta(2)-NNMe(2))(dpma)](2) (7) were characterized. In addition, a terminal hydrazido(2-) complex was available by addition of Bu(t)-bpy to 1 prior to 1,1-dimethylhydrazine addition, which provided Ti(eta(1)-NNMe(2))(Bu(t)-bpy)(dpma) (8). Compound 8 was structurally characterized and compared to Ti(NPh)(Bu(t)-bpy)(dpma) (4b), an imido derivative with the same ancillary ligand set. Compound 8 has a nucleophilic beta-nitrogen consistent with a hydrazido(2-) formulation, as determined by reaction with MeI to form the ammonium imido complex [Ti(NNMe(3))(Bu(t)-bpy)(dpma)]I (9). Analogous pyridinium imido complexes [Ti(N-1-pyridinium)(Bu(t)-bpy)(dpma)](+) (10) are available by addition of 1-aminopyridinium iodide to 1. From the investigations, some conclusions regarding the activity of titanium pyrrolyl complexes in hydroamination were drawn. The lack of conversion of the bis[micro-hydrazido(2-)] 7 to monomeric species in the presence of donor ligands is put forth as one explanation for the poor hydrazine hydroamination activity of 1. This problem was combated in the synthesis of Ti(NMe(2))(2)(dap)(2), which is an active catalyst for hydrazine hydroamination of alkynes.
[reaction: see text] Two readily prepared catalysts have been developed for the hydroamination of alkynes by 1,1-disubstituted hydrazines. The catalyses are facile with terminal alkynes and some internal alkynes. If the hydrazine bears an aryl group, Fischer cyclization can occur in a one-pot procedure. In addition, reactions with acetylene to produce a plethora of hydrazones are described. Catalytic reactions involving acetylene and substituted hydrazines are complete in less than 2 h at room temperature and 1 atm of pressure.
Hydroaminations of carbon-carbon triple bonds with primary amines are catalyzed with commercially available Ti(NMe 2 ) 4 . The reaction is surprisingly fast with many substrates and often selective for the Markovnikov product with terminal alkynes. The scope of the catalysis was investigated with a variety of amines and alkynes; arylamines and 1-hexyne were found to be especially good substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.