Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment.
Background
After traumatic brain injury (TBI), an acute, robust inflammatory cascade occurs that is characterized by the activation of resident cells such as microglia, the migration and recruitment of peripheral immune cells and the release of inflammatory mediators that induce secondary cell death and impede neurological recovery. In addition, neuroinflammation can alter blood–brain barrier (BBB) permeability. Controlling inflammatory responses is considered a promising therapeutic approach for TBI. Hydroxychloroquine (HCQ) has already been used clinically for decades, and it is still widely used to treat various autoimmune diseases. However, the effects of HCQ on inflammation and the potential mechanism after TBI remain to be defined. The aim of the current study was to elucidate whether HCQ could improve the neurological recovery of mice post-TBI by inhibiting the inflammatory response via the TLR4/NF-κB signaling pathway.
Methods
C57BL/6 mice were subjected to controlled cortical impact (CCI) and randomly divided into groups that received intraperitoneal HCQ or vehicle daily after TBI. TAK-242 (3.0 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h before TBI. Behavioral assessments were performed on days 1 and 3 post-TBI, and the gene expression levels of inflammatory cytokines were analyzed by qRT-PCR. The presence of infiltrated immune cells was examined by flow cytometry and immunostaining. In addition, BBB permeability, tight junction expression and brain edema were investigated.
Results
HCQ administration significantly ameliorated TBI-induced neurological deficits. HCQ alleviated neuroinflammation, the activation and accumulation of microglia and immune cell infiltration in the brain, attenuated BBB disruption and brain edema, and upregulated tight junction expression. Combined administration of HCQ and TAK-242 did not enhance the neuroprotective effects of HCQ.
Conclusions
HCQ reduced proinflammatory cytokine expression, and the underlying mechanism may involve suppressing the TLR4/NF-κB signaling pathway, suggesting that HCQ is a potential therapeutic agent for TBI treatment.
Diabetes increases the risk of stroke, exacerbates neurological deficits, and increases mortality. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is a powerful neuroprotective factor that is also regarded as a metabolic regulator. The present study aimed to investigate the effect of nmFGF1 on the improvement of functional recovery in a mouse model of type 2 diabetic (T2D) stroke. We established a mouse model of T2D stroke by photothrombosis in mice that were fed a high-fat diet and injected with streptozotocin (STZ). We found that nmFGF1 reduced the size of the infarct and attenuated neurobehavioral deficits in our mouse model of T2D stroke. Angiogenesis plays an important role in neuronal survival and functional recovery post-stroke. NmFGF1 promoted angiogenesis in the mouse model of T2D stroke. Furthermore, nmFGF1 reversed the reduction of tube formation and migration in human brain microvascular endothelial cells (HBMECs) cultured in high glucose conditions and treated with oxygen glucose deprivation/re-oxygenation (OGD). Amp-activated protein kinase (AMPK) plays a critical role in the regulation of angiogenesis. Interestingly, we found that nmFGF1 increased the protein expression of phosphorylated AMPK (p-AMPK) both in vivo and in vitro. We found that nmFGF1 promoted tube formation and migration and that this effect was further enhanced by an AMPK agonist (A-769662). In contrast, these processes were inhibited by the application of an AMPK inhibitor (compound C) or siRNA targeting AMPK. Furthermore, nmFGF1 ameliorated neuronal loss in diabetic stroke mice via AMPK-mediated angiogenesis. In addition, nmFGF1 ameliorated glucose and lipid metabolic disorders in our mouse model of T2D stroke without causing significant changes in body weight. These results revealed that nmFGF1-regulated glucolipid metabolism and angiogenesis play a key role in the improvement of functional recovery in a mouse model of T2D stroke and that these effects are mediated by the AMPK signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.