Although estrogen has crucial functions for endometrium growth, the specific dose and underlying molecular mechanism in intrauterine adhesion (IUA) remain unclear. In this study, we aimed to investigate the effects of estrogen on epithelial-mesenchymal transition (EMT) in normal and fibrotic endometrium, and the role of estrogen and Wnt/β-catenin signaling in the formation of endometrial fibrosis. CCK-8 and immunofluorescence assay were performed to access the proliferation of different concentrations of estrogen on normal human endometrial epithelial cells (hEECs). qRT-PCR and western blot assay were utilized to explore the effect of estrogen on EMT in normal and fibrotic endometrium, and main components of Wnt/β-catenin signaling pathway in vitro . Hematoxylin and eosin and Masson staining were used to evaluate the effect of estrogen on endometrial morphology and fibrosis in vivo . Our results indicated that the proliferation of normal hEECs was inhibited by estrogen at a concentration of 30 nM accompanied by upregulation of mesenchymal markers and downregulation of epithelial markers. Interestingly, in the model of transforming growth factor β1 (TGF-β1)-induced endometrial fibrosis, the same concentration of estrogen inhibited the process of EMT, which might be partially mediated by regulation of the Wnt/β-catenin pathway. In addition, relatively high doses of estrogen efficiently increased the number of endometrial glands and reduced the area of fibrosis as determined by the reduction of EMT in IUA animal models. Taken together, our results demonstrated that an appropriate concentration of estrogen may prevent the occurrence and development of IUA by inhibiting the TGF-β1-induced EMT and activating the Wnt/β-catenin pathway.
In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation.
Antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. However, recent studies have revealed that their transformation products (TPs) could adversely affect environmental organisms and even lead to environmental events, which led to great public concern about environmental occurrence and potential impacts of rubber antioxidants and their TPs. In this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their TPs in the environment, emphasizing their influence on the ozone oxidative degradation. The potential toxic effects of antioxidants and their TPs are further reviewed to improve understanding of their biological health impact and environmental risks. Finally, the environmental occurrences of antioxidants and their TPs are summarized and their environmental impacts are demonstrated based on the recent studies. Due to the currently limited understanding on the toxic and biological effects of these compounds, further studies are required in order to better assess various TPs of these antioxidants and their environmental impact. To our knowledge, this is the first review on antioxidants and their TPs in the environment, which may elevate the environmental risk awareness of rubber products and their TPs in the near future.
Background Intrauterine adhesion (IUA) is a clinical disease characterized by the uterine cavity occlusion caused by the damage of the endometrial basal layer. Bone marrow mesenchymal stem cells (BMSCs) transplantation have the potential to promote endometrial regeneration mainly through paracrine ability. Estrogen is an indispensable and important factor in the repair of endometrial damage, which has been reported as a promising and adjunctive therapeutic application for stem cell transplantation therapy. This study aims to investigate the synergistic effect of BMSCs and estrogen on improving the endometrial regeneration and restoring the endometrium morphology in a dual damage model of IUA in rabbits and the underlying molecular mechanisms. Methods BMSCs were isolated and identified by adipogenic and osteogenic differentiation and flow cytometry assays. The rabbit IUA animal model was established by a dual damage method of mechanical curettage and lipopolysaccharide infection. Additionally, we investigated the therapeutic impact of both BMSCs and estrogen either separately or in combination in a rabbit model. The retention of PKH26-labeled BMSCs was observed by vivo fluorescence imaging.The number of endometrial glands and the degree of fibrosis were observed by H&E and Masson staining respectively. Western blotting, Immunohistochemistry and immunofluorescence staining were performed to detect biomarkers related to endometrial epithelium, endometrial fibrosis and EMT. Finally, the protein expression of core molecules of Wnt/β-catenin pathway was detected by Western blotting. Results PKH26-labeled fluorescence results revealed that BMSCs appeared and located in the endometrial glands and extracellular matrix area when orthotopic transplanted into the uterine cavity. Histological assays showed that remarkably increasing the number of endometrial glands and decreasing the area of endometrial fibrosis in the BMSCs combined with estrogen treatment group. Moreover, downregulated expression of fibrosis markers (fibronectin, CollagenI, a-SMA) and interstitial markers (ZEB1, Vimentin, N-cadherin), as well as upregulated E-cadherin expression were found in the combined group. Further study of in vivo staining revealed that fluorescence intensity of CK7 was stronger in the combined group than that of direct BMSCs intrauterine transplantation, while vimentin showed the opposite results. Moreover, the protein levels of β-catenin, Axin2, C-myc, CycinE of Wnt/β-catenin signaling pathway increased in the BMSCs combined with estrogen group than in the other treatment groups. Conclusion BMSCs combined with estrogen can promote the differentiation of stem cells into endometrial epithelial cells to facilitate the regeneration of damaged endometrium. The potential mechanism of the synergistic effect may inhibit the occurrence of EMT by activating the Wnt/β-catenin signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.