Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC) that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1), but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM) assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions.
Dental pulp stem cells (DPSCs) are an attractive alternative mesenchymal stem cell (MSC) source because of their isolation simplicity compared with the more invasive methods associated with harvesting other MSC sources. However, the isolation method to be favored for obtaining DPSC cultures remains under discussion. This study compares the stem cell properties and multilineage differentiation potential of DPSCs obtained by the two most widely adapted isolation procedures. DPSCs were isolated either by enzymatic digestion of the pulp tissue (DPSC-EZ) or by the explant method (DPSC-OG), while keeping the culture media constant throughout all experiments and in both isolation methods. Assessment of the stem cell properties of DPSC-EZ and DPSC-OG showed no significant differences between the two groups with regard to proliferation rate and colony formation. Phenotype analysis indicated that DPSC-EZ and DPSC-OG were positive for CD29, CD44, CD90, CD105, CD117 and CD146 expression without any significant differences. The multilineage differentiation potential of both stem cell types was confirmed by using standard immuno(histo/cyto)chemical staining together with an in-depth ultrastructural analysis by means of transmission electron microscopy. Our results indicate that both DPSC-EZ and DPSC-OG could be successfully differentiated into adipogenic, chrondrogenic and osteogenic cell types, although the adipogenic differentiation of both stem cell populations was incomplete. The data suggest that both the enzymatic digestion and outgrowth method can be applied to obtain a suitable autologous DPSC resource for tissue replacement therapies of both bone and cartilage.
Within the field of dental tissue engineering, the establishment of adequate tissue vascularization is one of the most important burdens to overcome. As vascular access within the tooth is restricted by the apical foramen, it is of major importance to implement effective vascularization strategies in order to recreate viable components of teeth and periodontal tissues. However, while the current regenerative approaches focus on the use of dental stem cells (DSCs), little is known about these cells and their ability to promote angiogenesis. Therefore, the present study aimed to elucidate the paracrine angiogenic properties of postnatal DSCs, in particular dental pulp stem cells (DPSCs), stem cells from the apical papilla (SCAPs) and dental follicle precursor cells (FSCs). An antibody array, together with RT-PCR and ELISA, pointed out the differential expression of pro-angiogenic as well as anti-angiogenic factors by cultured DSCs and human gingival fibroblasts (HGF-1). Despite the secretion of proliferation-promoting factors, DSCs caused no notable increase in the proliferation of human microvascular endothelial cells (HMEC-1). With regard to other aspects of the angiogenic cascade, DPSCs, SCAPs and HGF-1 significantly promoted endothelial migration in a transwell migration assay. DPSCs also had a pronounced effect on endothelial tubulogenesis, as was shown by an in vitro Matrigel™ assay. In the last part of this study, a chorioallantoic membrane assay demonstrated a sustained pro-angiogenic impact of DPSCs and SCAPs in an in vivo setting. Collectively, these data indicate a predominant pro-angiogenic influence of DPSCs and SCAPS in vitro and in vivo in comparison to FSCs, suggesting that both stem cell populations could potentially promote the vascularization of regenerated dental tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.