A full-term infant developed respiratory distress immediately after birth, requiring a prolonged course of extra-corporeal membrane oxygenation, followed by high-frequency ventilation. She was unable to wean off mechanical ventilation, required tracheostomy, and ultimately lung transplantation. A novel mutation in the surfactant C protein gene was identified as the cause of her lung disease.
Naphthalene poisoning due to exposure to mothballs is a common cause of toxicity in children worldwide. Naphthalene toxicity is known to cause hemolytic anemia, methemoglobinemia, and hepatic and renal injury. Neonates are more susceptible to the effects of oxidative stress from naphthalene because of their low glutathione stores and immaturity of hepatic enzymes. However, there are no reported cases of chronic fetal exposure to naphthalene during pregnancy. We report a novel case of chronic fetal exposure to naphthalene-containing mothballs that occurred from the second trimester through the third trimester of pregnancy. Our patient presented with hyperbilirubinemia, requiring exchange transfusion, severe hemolytic anemia, pulmonary hypertension, respiratory failure, and renal failure and progressed to develop “bronze baby” syndrome. Pregnant mothers should be diligently screened for such exposures and if found should receive psychiatric evaluation and counseling to prevent such devastating effects in neonates.
Previously we showed that following hypoxia there is an increase in nuclear Ca(2+)-influx and Ca(2+)/calmodulin-dependent protein kinase IV activity (CaMK IV) in the cerebral cortex of term guinea pig fetus. The present study tests the hypothesis that clonidine administration will prevent hypoxia-induced increased neuronal nuclear Ca(2+)-influx and increased CaMK IV activity, by blocking high-affinity Ca(2+)-ATPase. Studies were conducted in 18 pregnant guinea pigs at term, normoxia (Nx, n=6), hypoxia (Hx, n=6) and clonidine with Hx (Hx+Clo, n=6). The pregnant guinea pig was exposed to a decreased FiO(2) of 0.07 for 60 min. Clonidine, an imidazoline inhibitor of high-affinity Ca(2+)-ATPase, was administered 12.5 microg/kg IP 30 min prior to hypoxia. Hypoxia was determined biochemically by ATP and phosphocreatine (PCr) levels. Nuclei were isolated and ATP-dependent (45)Ca(2+)-influx was determined. CaMK IV activity was determined by (33)P-incorporation into syntide 2 for 2 min at 37 degrees C in a medium containing 50mM HEPES (pH 7.5), 2mM DTT, 40muM syntide 2, 0.2mM (33)P-ATP, 10mM magnesium acetate, 5 microM PKI 5-24, 2 microM PKC 19-36 inhibitor peptides, 1 microM microcystine LR, 200 microM sodium orthovanadate and either 1mM EGTA (for CaMK IV-independent activity) or 0.8mM CaCl(2) and 1mM calmodulin (for total activity). ATP (mumoles/gbrain) values were significantly different in the Nx (4.62+/-0.2), Hx (1.65+/-0.2, p<0.05 vs. Nx), and Hx+Clo (1.92+/-0.6, p<0.05 vs. Nx). PCr (mumoles/g brain) values in the Nx (3.9+/-0.1), Hx (1.10+/-0.3, p<0.05 vs. Nx), and Hx+Clo (1.14+/-0.3, p<0.05 vs. Nx). There was a significant difference between nuclear Ca(2+)-influx (pmoles/mg protein/min) in Nx (3.98+/-0.4), Hx (10.38+/-0.7, p<0.05 vs. Nx), and Hx+Clo (7.35+/-0.9, p<0.05 vs. Nx, p<0.05 vs. Hx), and CaM KIV (pmoles/mg protein/min) in Nx (1314.00+/-195.4), Hx (2315.14+/-148.5, p<0.05 vs. Nx), and Hx+Clo (1686.75+/-154.3, p<0.05 vs. Nx, p<0.05 vs. Hx). We conclude that the mechanism of hypoxia-induced increased nuclear Ca(2+)-influx is mediated by high-affinity Ca(2+)-ATPase and that CaMK IV activity is nuclear Ca(2+)-influx-dependent. We speculate that hypoxia-induced alteration of high-affinity Ca(2+)-ATPase is a key step that triggers nuclear Ca(2+)-influx, leading to CREB protein-mediated increased expression of apoptotic proteins and hypoxic neuronal death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.