Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists’ efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15–20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global ‘do-it-yourself’ research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrickTM standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools.Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrickTM formatted plasmid.Results. All species were stable over 11 weeks of glycerol cryopreservation, sensitive to 17 µg/mL chloramphenicol and resistant to transformation using the conditions and plasmids tested. An incubator-shaker device, ‘UCLHack-12’ was assembled and used to cultivate sufficient quantity of Oceanobulbus indolifexcells to enable isolation of the anf1 gene and its subcloning into a plasmid to generate the BioBrickTM BBa_K729016.Conclusion.The process of ‘de-skilling’ biomolecular techniques, particularly for relatively under-investigated organisms, is still on-going. However, our successful cell growth and DNA manipulation experiments serve to indicate the types of capabilities that are now available to citizen scientists. Science democratised in this way can make a positive contribution to the debate around the use of bio-geoengineering to address oceanic pollution or climate change.
Kinetoplastid protozoa possess properties that are highly divergent from the mammalian, yeast and bacterial cells more commonly used in synthetic biology and represent a tantalisingly untapped source of bioengineering potential. Trypanosoma brucei brucei (T. b. brucei), an established model organism for studying the Kinetoplastida, is non-pathogenic to humans and provides an interesting test case for establishing synthetic biology in this phylogenetic class. To demonstrate further the tractability of Kinetoplastida to synthetic biology, we sought to construct and demonstrate a Goodwin oscillator, the simplest oscillatory gene network, in T. b. brucei for the first time. We report one completed iteration of the archetypal synthetic biology Design-Build-Test-Learn (DBTL) cycle; firstly, using Ab initio mathematical modelling of the behaviour a theoretical, oscillatory, trypanosomal synthetic gene network (SGN) to inform the design of a plasmid encoding that network. Once assembled, the plasmid was then used to generate a stable transfectant T. b. brucei cell line. To test the performance of the oscillatory SGN, a novel experimental setup was established to capture images of the fluorescent signal from motion-restricted live cells. Data captured were consistent with oscillatory behaviour of the SGN, with cellular fluorescence observed to oscillate with a period of 50 min, with varying amplitude and linear growth trend. This first DBTL cycle establishes a foundation for future cycles in which the SGN design and experimental monitoring setup can be further refined.
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.