Temporal and spatial regulation of proteins contributes to function. We describe a multidimensional microscopic robot technology for high-throughput protein colocalization studies that runs cycles of fluorescence tagging, imaging and bleaching in situ. This technology combines three advances: a fluorescence technique capable of mapping hundreds of different proteins in one tissue section or cell sample; a method selecting the most prominent combinatorial molecular patterns by representing the data as binary vectors; and a system for imaging the distribution of these protein clusters in a so-called toponome map. By analyzing many cell and tissue types, we show that this approach reveals rules of hierarchical protein network organization, in which the frequency distribution of different protein clusters obeys Zipf's law, and state-specific lead proteins appear to control protein network topology and function. The technology may facilitate the development of diagnostics and targeted therapies.
Efalizumab (RaptivaTM) is an immunomodulating recombinant humanized IgG1 monoclonal antibody that binds to CD11a, the α-subunit of leukocyte function antigen-1 (LFA-1). By blocking the binding of LFA-1 to ICAM-1, efalizumab inhibits the adhesion of leukocytes to other cell types and interferes with the migration of T lymphocytes to sites of inflammation (including psoriatic skin plaques). Analysis of the response in patients treated with efalizumab to date shows that distinct groups of responders and nonresponders to the drug exist. It would therefore be of great practical value to be able to predict which patients are most likely to respond to treatment, by identifying key parameters in the mechanism of action of efalizumab. Detailed investigation and detection of multiple epitopes in microcompartments of skin tissue has until recently been restricted by the available technology. However, the newly developed technique of Multi-Epitope Ligand Cartography (MELC) robot technology combines proteomics and biomathematical tools to visualize protein networks at the cellular and subcellular levels in situ, and to decipher cell functions. The MELC technique, which is outlined in this paper, was used to help characterize the binding of efalizumab to affected and unaffected psoriatic skin as compared to normal control skin under ex vivomodel conditions. Efalizumab was labeled with fluorescein isothiocyanate and integrated into a MELC library of more than 40 antibodies. These antibodies were selected for their potential to detect epitopes which may be indicative of (a) various cell types, (b) structural components of the extracellular matrix, or (c) the processes of cell proliferation, activation and adhesion. Efalizumab bound to CD11a in affected psoriatic skin by a factor 15× and 32× higher than in unaffected psoriatic skin and normal control skin, respectively. CD11a and the efalizumab binding site were primarily expressed in the extravascular dermis, whereas CD54 (ICAM-1) as its ligand was most prevalent in the dermal vessels. T lymphocytes (for which the markers were CD3, CD8, CD4, and CD45R0) were the major cellular targets of efalizumab. In contrast, NK cells were only a minor target of efalizumab. Our study demonstrated that efalizumab represents a treatment for psoriasis that primarily targets memory CD4+ and CD8+ T cells and has a high specificity for psoriatic disease activity. Moreover, we hereby introduce the novel principle of a biological drug-binding biochip assay being especially useful for the future monitoring of psoriatic skin lesions under efalizumab treatment conditions.
N -Glycolylneuraminic acid (Neu5Gc), an abundant sialic acid in animal glycoconjugates, is formed by the enzyme CMP-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase. The amount of Neu5Gc relative to other sialic acids is highly dependent on the species, tissue and developmental stage. Although the activity of the hydroxylase is a key factor in controlling Neu5Gc incorporation in adult animals, little is known about the regulation of hydroxylase expression and the role of this enzyme in determining changes in Neu5Gc during development. Using pig small intestine as a model system, the appearance of total sialic acid and the regulation of Neu5Gc biosynthesis during development were studied in various regions of this tissue. The amount of total sialic acid and Neu5Gc declined markedly in 2 weeks after birth. Although in subsequent developmental phases there were no positional differences in total sialic acid, a significant proximal-to-distal increase in Neu5Gc was detected. In all cases, a good correlation between the amount of Neu5Gc, the activity of the hydroxylase and the level of hydroxylase mRNA was observed. However, Western-blot analysis revealed considerable accumulation of less active enzyme in the post partum period, which persisted until adulthood. No evidence for cytosolic factors influencing the hydroxylase activity or for the formation of truncated enzyme was found, raising the possibility that other regulatory mechanisms are involved. The relevance of these results in the formation of Neu5Gc as a receptor for certain pig enteric pathogens is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.