Rheometry is an experimental technique widely used to determine the mechanical properties of biofilms. However, it characterizes the bulk mechanical behavior of the whole biofilm. The effects of biofilm mechanical heterogeneity on rheometry measurements are not known. We used laboratory experiments and computer modeling to explore the effects of biofilm mechanical heterogeneity on the results obtained by rheometry. A synthetic biofilm with layered mechanical properties was studied, and a viscoelastic biofilm theory was employed using the Kelvin–Voigt model. Agar gels with different concentrations were used to prepare the layered, heterogeneous biofilm, which was characterized for mechanical properties in shear mode with a rheometer. Both experiments and simulations indicated that the biofilm properties from rheometry were strongly biased by the weakest portion of the biofilm. The simulation results using linearly stratified mechanical properties from a previous study also showed that the weaker portions of the biofilm dominated the mechanical properties in creep tests. We note that the model can be used as a predictive tool to explore the mechanical behavior of complex biofilm structures beyond those accessible to experiments. Since most biofilms display some degree of mechanical heterogeneity, our results suggest caution should be used in the interpretation of rheometry data. It does not necessarily provide the “average” mechanical properties of the entire biofilm if the mechanical properties are stratified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.