The consequences of perinatal asphyxia (PA) include alterations which may manifest as schizophrenia. Characteristic features of this disease include a decrease in specific subpopulations of GABAergic cells and deterioration of social interaction. The purpose of this study is to assess if a deep and short‐hypothermic treatment can ameliorate this damage in a model of PA. Rats offsprings were exposed to 19 min of asphyxia by immersing the uterus horns in water at 37 °C followed by 30 min in air at 10 °C that resulted in 15 °C body temperature. At postnatal day 36–38, the rats were tested in the open field and social interaction paradigms and processed for immunostaining of calbindin and reelin. A brief exposure to deep hypothermia reversed the deterioration produced by PA in play soliciting. PA decreased the density of calbindin neurons in layer II of the Anterior Insular Cortex, while deep hypothermia reversed this effect. Paradoxically, in AIC, there was a significant increase in the number of reelin‐secreting neurons in layers II and III generated by PA and this increase was reversed by hypothermia. This suggests a compensatory mechanism, where reelin neurons trend to compensate for the loss of calbindin neurons, at least within Anterior Insular Cortex. Finally, the deep hypothermic shock might represent a valuable therapeutic alternative to treat PA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.