Free-standing macroporous bioglass scaffolds were prepared by a solÀgel route. The ice-segregation-induced self-assembly method was employed to structure a bioglass aqueous sol in the form of green monoliths with a well-defined macroporosity. The achieved texture was essentially preserved after a mild annealing at 873 K. The texture can be properly tuned by typical variables such as the freezing rate or sol concentration. In addition to these physical preparative variables, the acidity level plays a key role in preventing the silica condensation, keeping the primary building units in the early stages of the solÀgel transition and allowing the obtainment of large macropores. The chemical homogeneity of the resulting bioglass was enough to ensure a proper in vitro biomineralization response, resulting in a well-distributed hydroxyaopatite-like nanoparticulated layer.
Hyaluronic acid (HA) hydrogels were structured in the form of porous monoliths by means of the ice-segregation-induced self-assembly (ISISA) method coupled with freeze-drying. Physical and chemical parameters were explored in order to fine-tune the microstructure and the incidence on both swelling and dissolution behavior in aqueous media. Gentamicin-loaded HA matrices with tuned drug release properties were also prepared; their inherent properties and behavior in solution are discussed in the framework of thermal analysis and scanning electron microscopy inspection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.