We study a form of unequal error protection that we term "unequal message protection" (UMP). The message set of a UMP code is a union of m disjoint message classes. Each class has its own error protection requirement, with some classes needing better error protection than others. We analyze the tradeoff between rates of message classes and the levels of error protection of these codes. We demonstrate that there is a clear performance loss compared to homogeneous (classical) codes with equivalent parameters. This is in sharp contrast to previous literature that considers UMP codes. To obtain our results we generalize finite block length achievability and converse bounds due to Polyanskiy-Poor-Verdú. We evaluate our bounds for the binary symmetric and binary erasure channels, and analyze the asymptotic characteristic of the bounds in the fixed error and moderate deviations regimes. In addition, we consider two questions related to the practical construction of UMP codes. First, we study a "header" construction that prefixes the message class into a header followed by data protection using a standard homogeneous code. We show that, in general, this construction is not optimal at finite block lengths. We further demonstrate that our main UMP achievability bound can be obtained using coset codes, which suggests a path to implementation of tractable UMP codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.