Hyper-inflammation associated with cytokine storm syndrome causes high mortality in patients with COVID-19. Glucocorticoids, such as methylprednisolone sodium succinate (MPSS), effectively inhibit this inflammatory response. However, frequent and chronic administration of glucocorticoids at high doses leads to hormone dependence and serious side effects. The aim of the present study was to combine nanoparticles with erythrocytes for the targeted delivery of MPSS to the lungs. Chitosan nanoparticles loading MPSS (MPSS-CSNPs) were prepared and adsorbed on the surface of red blood cells (RBC-MPSS-CSNPs) by non-covalent interaction.
In vivo
pharmacokinetic study indicated that RBC-hitchhiking could significantly reduce the plasma concentration of the drug and prolong the circulation time. The mean residence time (MRT) and area under the curve (AUC) of the RBC-MPSS-CSNPs group were significantly higher than those of the MPSS-CSNPs group and the MPSS injection group. Moreover,
in vivo
imaging and tissue distribution indicated that RBC-hitchhiking facilitated the accumulation of nanoparticles loading fluorescein in the lung, preventing uptake of these nanoparticles by the liver. Furthermore, compared with the MPSS-CSNPs and MPSS treatment groups, treatment with RBC-MPSS-CSNPs considerably inhibited the production of inflammatory cytokines such as TNF-α and IL-6, and consequently attenuated lung injury induced by lipopolysaccharide in rats. Therefore, RBC-hitchhiking is a potentially effective strategy for the delivery of nanoparticles to the lungs for the treatment of acute lung injury and acute respiratory distress syndrome.
Acute lung injury (ALI) is a disease associated with suffering and high lethality, but to date without any effective pharmacological management in the clinic. In the pathological mechanisms of ALI, a strong inflammatory response plays an important role. Herein, based on macrophage ‘homing’ into inflammation sites and cell membrane coating nanotechnology, we developed a biomimetic anti-inflammation nanosystem (MM-CEP/NLCs) for the treatment of ALI. MM-CEP/NLCs were made with nanostructured lipid carriers (NLCs) coated with natural macrophage membranes (MMs) to achieve effective accumulation of cepharanthine (CEP) in lung inflammation to achieve the effect of treating ALI. With the advantage of suitable physicochemical properties of NLCs and unique biological functions of the macrophage membrane, MM-CEP/NLCs were stabilized and enabled sustained drug release, providing improved biocompatibility and long-term circulation.
In vivo
, the macrophage membranes enabled NLCs to be targeted and accumulated in the inflammation sites. Further, MM-CEP/NLCs significantly attenuated the severity of ALI, including lung water content, histopathology, bronchioalveolar lavage cellularity, protein concentration, and inflammation cytokines. Our results provide a bionic strategy via the biological properties of macrophages, which may have greater value and application prospects in the treatment of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.