Autoregulation of the ciliary beat frequency (CBF) has been proposed as the mechanism used by epithelial ciliated cells to maintain the CBF and prevent the collapse of mucociliary transport under conditions of varying mucus viscosity. Despite the relevance of this regulatory response to the pathophysiology of airways and reproductive tract, the underlying cellular and molecular aspects remain unknown. Hamster oviductal ciliated cells express the transient receptor potential vanilloid 4 (TRPV4) channel, which is activated by increased viscous load involving a phospholipase A2–dependent pathway. TRPV4-transfected HeLa cells also increased their cationic currents in response to high viscous load. This mechanical activation is prevented in native ciliated cells loaded with a TRPV4 antibody. Application of the TRPV4 synthetic ligand 4α-phorbol 12,13-didecanoate increased cationic currents, intracellular Ca2+, and the CBF in the absence of a viscous load. Therefore, TRPV4 emerges as a candidate to participate in the coupling of fluid viscosity changes to the generation of the Ca2+ signal required for the autoregulation of CBF.
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2–EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)–inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2-EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)-inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.