Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool.
Purpose: To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. Experimental Design: We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly-defined subgroups were identified and tested for association with clinical characteristics and overall survival. Results: We detected a putative somatic driver mutation in at least one candidate gene in 95% (401 out of 421) of CCOC tumors including: ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%) and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53-mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared to the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend towards lower response rate to first-line platinum-based therapy. Conclusions: Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.