Periglandula is a fungal genus that is associated with plants in the family Convolvulaceae. They produce medicinally important constituents called ergot alkaloids, which are stored in their host plants. Previously, the fungi were reported to mainly interact with young leaves and seeds of Convolvulaceae species. However, knowledge about how ergot alkaloid-producing fungi interact with their host plants is still lacking. Therefore, we investigated the interaction of Periglandula fungus with different plant parts of Ipomoea asarifolia, using molecular, histochemical, anatomical and micromorphological techniques. Our findings confirm the presence of Periglandula ipomoeae on six out of the eight plant parts examined (young folded leaves, mature leaves, flower buds, mature flowers, young seeds and mature seeds). The fungus was mostly distributed along external plant surfaces, and particularly on areas that were relatively unexposed. Our results suggest that the density of fungal mycelium varies depending on glandular trichome density and the growth stage of the host plant. Detection of the fungus in the flowers of its host plant, for the first time, fills a missing link in understanding how vertical transmission of Periglandula species occurs.
Oil pollution is one potential consequence of industry development, and oil contamination occurs in countries around the world. However, few studies have examined the detrimental effects of oil on plant anatomy. Therefore, the objectives of this study were (1) to determine the impacts of crude oil on the physiological and anatomical parameters of Ischaemum muticum L. (Poaceae) and (2) to examine its potential as a bioindicator of oil pollution. Experimental plants were treated with one of four concentrations of crude oil (1%, 2%, 3%, and 4% volume/weight) and compared to control plants (no oil applied). Four physiological and 23 anatomical parameters were measured 7, 15, 30, 45, and 60 days after treatment. Crude oil negatively affected both physiological traits (leaf width and chlorophyll content) and anatomical traits (midrib vascular bundle height, leaf cutin thickness, leaf vascular bundle width and height, abaxial and adaxial margin cutin thickness, adaxial stomata density, adaxial short cell width, and abaxial long cell width). In general, the affected traits were modified by even the lowest oil concentration tested (1%). We discuss the potential of I. muticum as a bioindicator of oil pollution, given its prevalence in coastal areas of the paleotropics and its sensitivity to oil contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.