Neural Linear Models (NLM) are deep models that produce predictive uncertainty by learning features from the data and then performing Bayesian linear regression over these features. Despite their popularity, few works have focused on formally evaluating the predictive uncertainties of these models. In this work, we show that traditional training procedures for NLMs can drastically underestimate uncertainty in data-scarce regions. We identify the underlying reasons for this behavior and propose a novel training procedure for capturing useful predictive uncertainties.
Many researchers and policymakers have expressed excitement about algorithmic explanations enabling more fair and responsible decision-making. However, recent experimental studies have found that explanations do not always improve human use of algorithmic advice. In this study, we shed light on how people interpret and respond to counterfactual explanations (CFEs)---explanations that show how a model's output would change with marginal changes to its input(s)---in the context of pretrial risk assessment instruments (PRAIs). We ran think-aloud trials with eight sitting U.S. state court judges, providing them with recommendations from a PRAI that includes CFEs. We found that the CFEs did not alter the judges' decisions. At first, judges misinterpreted the counterfactuals as real---rather than hypothetical---changes to defendants. Once judges understood what the counterfactuals meant, they ignored them, stating their role is only to make decisions regarding the actual defendant in question. The judges also expressed a mix of reasons for ignoring or following the advice of the PRAI without CFEs. These results add to the literature detailing the unexpected ways in which people respond to algorithms and explanations.
They also highlight new challenges associated with improving human-algorithm collaborations through explanations.
Yacoby Pan Doshi-Velez φ such that g φ (x) = η(x); we denote the variational distributions g φ (x) by q φ (z|x). Thus, maximization of the ELBO can be expressed :Posterior Matching (PM) Objective
Variational Auto-encoders (VAEs) are deep generative latent variable models that are widely used for a number of downstream tasks. While it has been demonstrated that VAE training can suffer from a number of pathologies, existing literature lacks characterizations of exactly when these pathologies occur and how they impact down-stream task performance. In this paper we concretely characterize conditions under which VAE training exhibits pathologies and connect these failure modes to undesirable effects on specific downstream tasks -learning compressed and disentangled representations, adversarial robustness and semi-supervised learning.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.