Discriminant graph embedding-based dimensionality reduction methods have attracted more and more attention over the past few decades. These methods construct an intrinsic graph and penalty graph to preserve the intrinsic geometry structures of intraclass samples and separate the interclass samples. However, the marginal samples cannot be accurately characterized only by penalty graphs since they treat every sample equally. In practice, these marginal samples often influence the classification performance, which needs to be specially tackled. In this study, the near neighbors’ hypothesis margin of marginal samples has been further maximized to separate the interclass samples and improve the discriminant ability by integrating intrinsic graph and penalty graph. A novel discriminant dimensionality reduction named LMGE-DDR has been proposed. Several experiments on public datasets have been conducted to verify the effectiveness of the proposed LMGE-DDR such as ORL, Yale, UMIST, FERET, CMIU-PIE09, and AR. LMGE-DDR performs better than other compared methods, and the corresponding standard deviation of LMGE-DDR is smaller than others. This demonstrates that the evaluation method verifies the effectiveness of the introduced method.
With the explosive development of big data, information data mining technology has also been developed rapidly, and complex networks have become a hot research direction in data mining. In real life, many complex systems will use network nodes for intelligent detection. When many community detection algorithms are used, many problems have arisen, so they have to face improvement. The new detection algorithm CS-Cluster proposed in this paper is derived by using the dissimilarity of node proximity. Of course, the new algorithm proposed in this article is based on the IGC-CSM algorithm. It has made certain improvements, and CS-Cluster has been implemented in the four algorithms of IGC-CSM, SA-Cluster, W-Cluster, and S-Cluster. The result of comparing the density value on the entropy value of the Political Blogs data set, the DBLP data set, the Political Blogs data set, and the entropy value of the DBLP data set is shown. Finally, it is concluded that the CS-Cluster algorithm is the best in terms of the effect and quality of clustering, and the degree of difference in the subgraph structure of clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.