Coal bursts occurring in steeply inclined coal seams (SICSs) are increasingly severe. To solve this problem, a mechanical model for the distribution of static stress on coal-rock masses along panels and the distribution of dynamic load induced by the breakage of thick and hard roofs with propagation distance was established. The stress characteristics after a superposition of dynamic and static loads on the roof and floor roadways (Rr and Rf) were determined. In addition, precursory information characteristics and index sensitivities of four indices for dynamic loads and the CT index for static loads based on seismic tomography were separately analyzed. The monitoring and warning indices for SICSs and flat seams were compared. The results showed that the static stress of Rr was significantly higher than that of Rf, which provided a basis for the stress-triggering coal burst behaviors. Three indices for dynamic loads and seismic tomography results exhibited remarkable precursory information and high sensitivity. However, the performance of lack of shock index is poor. The continuous anomaly and the contradiction of indices at Rr and Rf can be considered as precursory information for predicting coal bursts.
This research is aimed at investigating the influence of the coal height ratio on the mechanical properties and damage behavior of rock-coal-rock combined samples (RCRCS) under coupled static and dynamic loads. For this purpose, a uniaxial cyclic dynamic loading experiment with four different coal height ratios of RCRCS was conducted. Mechanical properties, failure modes, and wave velocity evolution of RCRCS were analyzed; the process of rock burst under coupled static and dynamic loads in rock-coal-rock combined structure was discussed. The following research results are obtained. (1) The peak strength of RCRCS under static and dynamic load decreases with the increasing coal height ratio as an inverse proportional function. (2) The loading and unloading modulus remains consistent for the same levels of dynamic load; the coal height ratio of 40% may be the limit for the stable value of modulus. (3) The increase of the coal height in RCRCS leads to a gradual increase of the energy release rate; the cracks develop preferentially in coal and then extend to rock sample. The distribution of AE events and damage is consistent with the distribution of passive wave velocity. The research results provide important scientific bases for the guidance of early warning of rock burst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.