With the continuous improvement of the performance of modern aerospace aircraft, the overall strength and lightweight control of aircraft has become a significant feature of modern aerospace parts. With the wide application of thin-walled parts, the requirements for dimensional accuracy and surface quality of workpieces are increasing. In this paper, a numerical model for predicting surface topography of thin-walled parts after elastic deformation is proposed. In view of the geometric characteristics in the cutting process, the cutting force model of thin-walled parts is established, and the meshing relationship between the tool and the workpiece is studied. In addition, the influence of workpiece deformation is considered based on the beam deformation model. Cutting force is calculated based on deformed cutting thickness, and the next cutting–meshing relationship is predicted. The model combines the radial deflection of the workpiece in the feed direction and the changing meshing relationship of the tool–workpiece to determine the three-dimensional topography of the workpiece. The error range between the experimental and the simulation results of surface roughness is 7.45–13.09%, so the simulation three-dimensional morphology has good similarity. The surface topography prediction model provides a fast solution for surface quality control in the thin-walled parts’ milling process.
As a typical aerospace difficult-to-machine material, tool failure in milling titanium alloy Ti6Al4V will reduce the stability of the milling process and affect the surface quality of the workpiece. Aiming at the fact that cemented carbide tools are prone to wear failure and breakage failure in milling titanium alloy, a safe tool failure boundary map is provided to ensure that the tools will not occur failure with the cutting parameters selected in the safe area during the prediction time. Based on the processing characteristics of Ti6Al4V, the failure boundary map mainly considers three forms of tool failure: flank wear, rake wear, and cutting edge breakage. By revealing the three failure mechanisms, the failure analytical model is established and the failure boundary map is obtained. Compared with the experimental results, it has good consistency, and the research results can provide a reference for the field of titanium alloy cutting process.
Aiming at the breakage of tool and low precision of the machined surface in the high-speed milling process of titanium alloy, damage mechanics is used to reveal the formation mechanism of tool fatigue breakage during the milling and determine the critical condition of tool breakage. Cutting edge chipping caused by random impact fracture during the evolution of tool damage is the main failure form of tool fatigue breakage. Based on continuous damage mechanics, fatigue crack growth theory and sliding crack energy balance equation, the crack growth law of tool material is studied under different cutting impact, and the initial damage value and critical damage value of tool material fracture based on the interval method are obtained. And the impact fracture limit conditions of the end mill edge are established including cutting parameters, material hardness, tool damage, tool wear, and cutting impact, which provide a theoretical basis for determining the cutting parameters. A titanium alloy milling experiment is carried out to define the impact damage morphology of the tool in different states after the tool is damaged. The obtained tool safety area range is verified, and the research results provide parameter optimization for the high-speed and high-efficiency milling titanium alloy process.
Aiming at the breakage of tool and low precision of the machined surface in the high-speed milling process of titanium alloy, damage mechanics is used to reveal the formation mechanism of tool fatigue breakage during the milling and determine the critical condition of tool breakage. Cutting edge chipping caused by random impact fracture during the evolution of tool damage is the main failure form of tool fatigue breakage. Based on continuous damage mechanics, fatigue crack growth theory and sliding crack energy balance equation, the crack growth law of tool material is studied under different cutting impact, and the initial damage value and critical damage value of tool material fracture based on the interval method are obtained. And the impact fracture limit conditions of the end mill edge are established including cutting parameters, material hardness, tool damage, tool wear, and cutting impact, which provide a theoretical basis for determining the cutting parameters. A titanium alloy milling experiment is carried out to define the impact damage morphology of the tool in different states after the tool is damaged. The obtained tool safety area range is verified, and the research results provide parameter optimization for the high-speed and high-efficiency milling titanium alloy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.