Traffic surveillance has become an important topic in intelligent transportation systems (ITSs), which is aimed at monitoring and managing traffic flow. With the progress in computer vision, video-based surveillance systems have made great advances on traffic surveillance in ITSs. However, the performance of most existing surveillance systems is susceptible to challenging complex traffic scenes (e.g., object occlusion, pose variation, and cluttered background). Moreover, existing related research is mainly on a single video sensor node, which is incapable of addressing the surveillance of traffic road networks. Accordingly, we present a review of the literature on the video-based vehicle surveillance systems in ITSs. We analyze the existing challenges in video-based surveillance systems for the vehicle and present a general architecture for video surveillance systems, i.e., the hierarchical and networked vehicle surveillance, to survey the different existing and potential techniques. Then, different methods are reviewed and discussed with respect to each module. Applications and future developments are discussed to provide future needs of ITS services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.