Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.