PurposeWe aimed to assess the additional value of a radiomics-based signature for distinguishing between benign and malignant non-mass enhancement lesions (NMEs) on dynamic contrast-enhanced breast magnetic resonance imaging (breast DCE-MRI).MethodsIn this retrospective study, 232 patients with 247 histopathologically confirmed NMEs (malignant: 191; benign: 56) were enrolled from December 2017 to October 2020 as a primary cohort to develop the discriminative models. Radiomic features were extracted from one post-contrast phase (around 90s after contrast injection) of breast DCE-MRI images. The least absolute shrinkage and selection operator (LASSO) regression model was adapted to select features and construct the radiomics-based signature. Based on clinical and routine MR features, radiomics features, and combined information, three discriminative models were built using multivariable logistic regression analyses. In addition, an independent cohort of 72 patients with 72 NMEs (malignant: 50; benign: 22) was collected from November 2020 to April 2021 for the validation of the three discriminative models. Finally, the combined model was assessed using nomogram and decision curve analyses.ResultsThe routine MR model with two selected features of the time-intensity curve (TIC) type and MR-reported axillary lymph node (ALN) status showed a high sensitivity of 0.942 (95%CI, 0.906 - 0.974) and low specificity of 0.589 (95%CI, 0.464 - 0.714). The radiomics model with six selected features was significantly correlated with malignancy (P<0.001 for both primary and validation cohorts). Finally, the individual combined model, which contained factors including TIC types and radiomics signatures, showed good discrimination, with an acceptable sensitivity of 0.869 (95%CI, 0.816 to 0.916), improved specificity of 0.839 (95%CI, 0.750 to 0.929). The nomogram was applied to the validation cohort, reaching good discrimination, with a sensitivity of 0.820 (95%CI, 0.700 to 0.920), specificity of 0.864 (95%CI,0.682 to 1.000). The combined model was clinically helpful, as demonstrated by decision curve analysis.ConclusionsOur study added radiomics signatures into a conventional clinical model and developed a radiomics nomogram including radiomics signatures and TIC types. This radiomics model could be used to differentiate benign from malignant NMEs in patients with suspicious lesions on breast MRI.
ObjectiveTo investigate the correlations between quantitative diffusion parameters and prognostic factors and molecular subtypes of breast cancer, based on a single fast high-resolution diffusion-weighted imaging (DWI) sequence with mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) models.Materials and MethodsA total of 143 patients with histopathologically verified breast cancer were included in this retrospective study. The multi-model DWI-derived parameters were quantitatively measured, including Mono-ADC, IVIM-D, IVIM-D*, IVIM-f, DKI-Dapp, and DKI-Kapp. In addition, the morphologic characteristics of the lesions (shape, margin, and internal signal characteristics) were visually assessed on DWI images. Next, Kolmogorov–Smirnov test, Mann-Whitney U test, Spearman’s rank correlation, logistic regression, receiver operating characteristic (ROC) curve, and Chi-squared test were utilized for statistical evaluations.ResultsThe histogram metrics of Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp were significantly different between estrogen receptor (ER)-positive vs. ER-negative groups, progesterone receptor (PR)-positive vs. PR-negative groups, Luminal vs. non-Luminal subtypes, and human epidermal receptor factor-2 (HER2)-positive vs. non-HER2-positive subtypes. The histogram metrics of Mono-ADC, DKI-Dapp, and DKI-Kapp were also significantly different between triple-negative (TN) vs. non-TN subtypes. The ROC analysis revealed that the area under the curve considerably improved when the three diffusion models were combined compared with every single model, except for distinguishing lymph node metastasis (LNM) status. For the morphologic characteristics of the tumor, the margin showed substantial differences between ER-positive and ER-negative groups.ConclusionsQuantitative multi-model analysis of DWI showed improved diagnostic performance for determining the prognostic factors and molecular subtypes of breast lesions. The morphologic characteristics obtained from high-resolution DWI can be identifying ER statuses of breast cancer.
Background The continuous‐time random‐walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. Purpose To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW‐specific parameters with prognostic factors and molecular subtypes of breast cancer. Study Type Retrospective. Population One hundred fifty‐seven women (median age, 50 years; range, 26–81 years) with histopathology‐confirmed breast cancer. Field Strength/Sequence Simultaneous multi‐slice readout‐segmented echo‐planar imaging at 3.0T. Assessment The histogram metrics of ADC, anomalous diffusion coefficient (D), temporal diffusion heterogeneity (α), and spatial diffusion heterogeneity (β) were calculated for whole‐tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki‐67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2‐positive, Luminal or triple negative) was also assessed. Statistical Tests Comparisons were made using Mann–Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. Results The histogram metrics of ADC, D, and α differed significantly between ER‐positive and ER‐negative status, and between PR‐positive and PR‐negative status. The histogram metrics of ADC, D, α, and β were also significantly different between the HER2‐positive and HER2‐negative subgroups, and between ALNM‐positive and ALNM‐negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki‐67 proliferation subgroups, and between histological grade subgroups. The combination of αmean and βmean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2‐positive subtypes. Data Conclusion Whole‐tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. Evidence Level 4 Technical Efficacy Stage 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.