In order to realize the low noise design of marine gearbox, a layout method of damping materials for gearbox based on acoustic contribution was proposed. The present method can accurately and effectively determine the additional area of damping materials and achieve greatly the noise reduction effect. Firstly, taking a marine single-stage herringbone gearbox as the object, the finite element/boundary element model for the reducer structure was established. After applying the vibration excitation of the gear system, the radiated noise of each field point was solved. Secondly, by analyzing the acoustic transfer vector (ATV) and modal acoustic contribution (MAC), the surface of the gearbox was partitioned, and the partitioned surface was analyzed by using panel acoustic contribution (PAC). Finally, the damping material was added to the plate area which contributes greatly to the radiated noise, and the effect of the noise reduction under different schemes were compared. The results show that the layout design of damping materials based on the present method can reduce the radiation noise of observation points accurately and effectively in the range of 0~4 000 Hz.
Taking the marine encased differential gear train as an example, the relationship between the journal bearing parameters and the meshing force of the transmission system is analyzed. In this paper, the dynamic model of the encased differential gear train with journal bearing is established considering the factors of time-varying meshing stiffness and comprehensive transmission error. In this dynamic model, four stiffnesses and four damping coefficients are applied to characterize the asymmetry and interaction of the oil film stiffness and damping of planet bearing. The system responses are calculated by the Fourier series numerical algorithm. The results show that the introduction of journal bearing in encased differential gear train can contribute to gearbox vibration reduction. Moreover, the planet bearing parameters (e.g., clearance-to-radius ratio and eccentricity ratio) of the differential stage affect the meshing forces of both the differential and encased stages. In addition, the influence of the planet bearing parameters of the encased stage on the meshing force of the encased stage is more obvious than that of the differential stage. This work may develop a theoretical analysis framework for the design and manufacture of marine transmission systems in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.