SUMMARY
Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models of CKD or acute diabetes. A small molecule that inhibits Stat3 activation produced similar responses suggesting a potential for translation strategies. Using C/EBPδ KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting.
Background:No reliable treatment exists for cancer-related muscle loss. Results: In muscles of mice with cancer, p-Stat3 stimulates proteolysis by activating caspase-3 and the ubiquitin-proteasome system through a C/EBP␦ and myostatin pathway.
Conclusion: Inhibition of Stat3 suppresses cancer-induced muscle losses.Significance: A small-molecule Stat3 inhibitor could be integrated into therapeutic strategies for preventing cancer-induced muscle losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.