Hash tables, as a type of data indexing structure that provides efficient data access based on key values, are widely used in various computer applications, especially in system software, databases, and high-performance computing field that requires extremely high performance. In network, cloud computing and IoT services, hash tables have become the core system components of cache systems. However, with the large-scale increase in the amount of large-scale data, performance bottlenecks have gradually emerged in systems designed with a multi-core CPU as the core of the hash table structure. There is an urgent need to further improve the high performance and scalability of the hash tables. With the increasing popularity of general-purpose Graphic Processing Units (GPUs) and the substantial improvement of hardware computing capabilities and concurrency performance, various types of system software tasks with parallel computing as the core have been optimized on the GPU and have achieved considerable performance improvements. Due to the sparseness and randomness, using the existing parallel structure of the hash tables directly on the GPUs will inevitably bring high-frequency memory access and frequent bus data transmission, which affects the performance of the hash tables on the GPUs. This study focuses on the analysis of memory access, hit ratio, and index overhead of hash table indexes in the cache system. The hybrid access cache indexing framework CCHT (Cache Cuckoo Hash Table ) adapted to GPU is proposed and provided. The cache strategy suitable to different requirements of hit ratios and index overheads allows concurrent execution of write and query operations, maximizing the use of the computing performance and concurrency characteristics of GPU hardware, reducing memory access and bus transferring overhead. Through GPU hardware implementation and experimental verification, CCHT is shown to have better performance than other cache indexing hash tables while ensuring cache hit ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.