Chiral materials related to circularly polarized luminescence (CPL) make up a rapidly developing new field that has broad application prospects in optoelectronic devices, selective recognition, biomedicine, and other fields. Biofunctional chiral materials are also attracting increasing attention because of their unique biocompatibility, chiral recognition, and coding. However, there has been little discussion on biomolecule‐based CPL till now. In this Review, the latest progress in CPL materials related with biomolecules are reviewed, including the chiral construction from molecular level to giant microstructure, as well as their emerging applications. In addition, we discuss the challenges and prospects of bio‐based CPL materials, hoping this work will provide new perspectives and insights for more related research.
An innovative strategy for circularly polarized luminescence (CPL) of carbon dots (CDs) has been developed: The achiral CDs displayed contrary supramolecular chirality and opposite CPL in two different bi-solvent systems, which are due to the formation of self-assembled helical nano-structures with two diverse assembly modes (P and M) in aggregate state via intermolecular π-π interactions and differential hydrogen bonding (H-bonding) without the need of any additional element of chirality.
We found that the complexes of nucleotides and terbium (III) had circularly polarized luminescence (CPL). The CPL of GMP/Tb/Ag coordination polymer nanoparticles (CPNs) was converted by magnetic field and pH....
Chiral materials related to circularly polarized luminescence (CPL) make up a rapidly developing new field that has broad application prospects in optoelectronic devices, selective recognition, biomedicine, and other fields. Biofunctional chiral materials are also attracting increasing attention because of their unique biocompatibility, chiral recognition, and coding. However, there has been little discussion on biomolecule‐based CPL till now. In this Review, the latest progress in CPL materials related with biomolecules are reviewed, including the chiral construction from molecular level to giant microstructure, as well as their emerging applications. In addition, we discuss the challenges and prospects of bio‐based CPL materials, hoping this work will provide new perspectives and insights for more related research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.