Five different types of elastomers were examined as the matrix materials in the preparation of non-fluorinated proton exchange membranes utilizing a solvent-free route via the in situ reaction of sodium 4-styrenesulfonate (NaSS). The morphology of the elastomer/NaSS vulcanizates was studied to evaluate the effect of polarity, viscosity and saturation degree of the elastomer matrixes. Much better dispersion of NaSS was found in chlorosulfonated polyethylene rubber (CSM) and hydrogenated nitrile butadiene rubber (HNBR) matrixes than in the other three types of elastomer matrixes. For CSM/NaSS and HNBR/NaSS proton exchange membranes, distinctive membrane properties were observed and correlated with their different structure and morphologies. The CSM/NaSS membranes exhibited the proton conductivity as high as~0.03 S cm À1 and the selectivity (the ratio of proton conductivity to methanol permeability) higher than that of Nafion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.