ObjectiveCervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390.MethodsLncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively.ResultsBased on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression.ConclusionTaken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.
The purpose of this study is to determine the methylation status of Transforming growth factor-beta-inducible gene-h3 (TGFBI) and its correlation with paclitaxel chemoresistance in ovarian cancer. The methylation status of TGFBI was examined in ovarian cancer and control groups by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The TGFBI expression and cell viability were compared by Quantitative Real-Time PCR, Western Blotting and MTT assay before and after demethylating agent 5-aza-2'-deoxycytidine (5-aza-dc) treatment in 6 cell lines (SKOV3, SKOV3/TR, SKOV3/DDP, A2780, 2780/TR, OVCAR8). In our results, TGFBI methylation was detected in 29/40 (72.5%) of ovarian cancer and 1/10 (10%) of benign ovarian tumors. No methylation was detected in normal ovarian tissues (P < 0.001). No statistical correlation between RUNX3 methylation and clinicopathological characteristics was observed. A significant correlation between TGFBI methylation and loss of TGFBI mRNA expression was found (P < 0.001). The methylation level of TGFBI was significantly higher in paclitaxel resistant cell lines (SKOV3/TR and 2780/TR) than that in the sensitive pairs (P < 0.001). After 5-aza-dc treatment, the relative expression of TGFBI mRNA and protein increased significantly in SKOV3/TR and A2780/TR cells. However, no statistical differences of relative TGFBI mRNA expression and protein were found in other cells (all P > 0.05), which showed that re-expression of TGFBI could reverse paclitaxel chemoresistance. Our results show that TGFBI is frequently methylated and associated with paclitaxel-resistance in ovarian cancer. TGFBI might be a potential therapeutic target for the enhancement of responses to chemotherapy in ovarian cancer patients.
Background: Given the roles of receptor for advanced glycation end products (RAGE) in the pathogenesis of carcinogenesis, we propose that RAGE polymorphisms may be associated with risk of epithelial ovarian carcinoma (EOC). Method: This case-control study included 190 women over 40 years of age who were diagnosed with primary EOC and 210 healthy control subjects. RAGE gene polymorphisms, including 82G>S,-374T>A,-429C>T,and 1704G>T were determined. Results: We found that only the frequencies of the 82G>S polymorphisms were significantly different between the EOC cases and controls. The 82SS genotype was significantly higher in EOC patients than in controls (37.89% vs. 23.33%,P<0.001). With the 82 GG genotype as reference, the OR for 82SS homozygous carriers reached to 2.65 (95% CI: 1.54-4.58; P =0.0004) after adjustment for age, smoking status, body mass index, family history, usage of contraceptives, tubal ligation history, use of menopausal hormones and menopausal status. The 82S allele carriage presented a higher risk for EOC (OR=1.71; 95% CI, 1.29-2.26; P=0.0002). The polymorphisms of 1704G>T,-374T>A and -429C>T did not affect the EOC risk. Conclusion: This result suggests that the 82G>S polymorphism of RAGE gene may be associated with the susceptibility of EOC.
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as ,, ,, ,, and , which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant./CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.