With the rapid development of femtosecond lasers, the generation and application of optical vortices have been extended to the regime of intense-light-matter interaction. The characterization of the orbital angular momentum (OAM) of intense vortex pulses is very critical. Here, we propose and demonstrate a novel photoelectron-based scheme that can in situ distinguish the OAM of the focused intense femtosecond optical vortices without the modification of light helical phase. We employ two-color co-rotating intense circular fields in the strong-field photoionization experiment, in which one color light field is a plane wave serving as the probing pulses and the other one is the vortex pulses whose OAM needs to be characterized. We show that by controlling the spatial profile of the probing pulses, the OAM of the vortex pulses can be clearly identified by measuring the corresponding photoelectron momentum distributions or angle-resolved yields. This work provides a novel in situ detection scenario for the light pulse vorticity and has implications for the studies of ultrafast and intense complex light fields with optical OAM.
The time delay of photoelectron emission serves as a fundamental building block to understand the ultrafast electron emission dynamics in strong-field physics. Here, we study the photoelectron angular streaking of CO molecules by using two-color (400+800 nm) corotating circularly polarized fields. By coincidently measuring photoelectrons with the dissociative ions, we present molecular frame photoelectron angular distributions with respect to the instantaneous driving electric field signatures. We develop a semiclassical nonadiabatic molecular quantum-trajectory Monte Carlo (MO-QTMC) model that fully captures the experimental observations and further ab initio simulations. We disentangle the orientation-resolved contribution of the anisotropic ionic potential and the molecular orbital structure on the measured photoelectron angular distributions. Furthermore, by analyzing the photoelectron interference patterns, we extract the sub-Coulomb-barrier phase distribution of the photoelectron wavepacket and reconstruct the orientation- and energy-resolved Wigner time delay in the molecular frame. Holographic angular streaking with bicircular fields can be used for probing polyatomic molecules in the future.
Nondipole effects are ubiquitous and crucial in light-matter interaction. However, they are too weak to be directly observed. In strong-field physics, the motion of electrons is mainly confined in the transverse plane of light fields, which suppresses the significance of nondipole effects. Here, we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields. We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of Hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics. In particular, we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields. This novel scenario holds promising applications for future studies with ultrafast structured light fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.