Abstract-The critical time for opening mitochondrial (mito) K ATP channels, putative end effectors of ischemic preconditioning (PC), was examined. In isolated rabbit hearts 29Ϯ3% of risk zone infarcted after 30 minutes of regional ischemia. Ischemic PC or 5-minute exposure to 10 mol/L diazoxide, a mito K ATP channel opener, reduced infarction to 3Ϯ1% and 8Ϯ1%, respectively. The mito K ATP channel closer 5-hydroxydecanoate (200 mol/L), bracketing either 5-minute PC ischemia or diazoxide infusion, blocked protection (24Ϯ3 and 28Ϯ6% infarction, respectively). However, 5-hydroxydecanoate starting 5 minutes before long ischemia did not affect protection. Glibenclamide (5 mol/L), another K ATP channel closer, blocked the protection by PC only when administered early. These data suggest that K ATP channel opening triggers protection but is not the final step. Five minutes of diazoxide followed by a 30-minute washout still reduced infarct size (8Ϯ3%), implying memory as seen with other PC triggers. The protection by diazoxide was not blocked by 5 mol/L chelerythrine, a protein kinase C antagonist, given either to bracket diazoxide infusion or just before the index ischemia. Bracketing preischemic exposure to diazoxide with 50 mol/L genistein, a tyrosine kinase antagonist, did not affect infarction, but genistein blocked the protection by diazoxide when administered shortly before the index ischemia. Thus, although it is not protein kinase C-dependent, the protection by diazoxide involves tyrosine kinase. Bracketing diazoxide perfusion with N-(2-mercaptopropionyl) glycine (300 mol/L) or Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (7 mol/L), each of which is a free radical scavenger, blocked protection, indicating that diazoxide triggers protection through free radicals. Therefore, mito K ATP channels are not the end effectors of protection, but rather their opening before ischemia generates free radicals that trigger entrance into a preconditioned state and activation of kinases. (Circ Res. 2000;87:460-466.)
Intravitreal injection of ketorolac produced higher intraocular drug concentrations for a longer period compared with the other two routes. Suprachoroidal injection of ketorolac could reach an effective drug level in the RC with short half-lives and low drug levels in the vitreous. The plasma drug concentrations were low by all three routes.
BackgroundThis study explores the role of actin cytoskeleton depolymerization induced by Cytochalasin D and mechanical stretch on the interleukin-8 (IL-8) expression and c-jun N-terminal kinase (JNK) phosphorylation levels in human retinal pigment epithelial (RPE) cells.MethodsA Flexcell FX-5000 Tension system was used to apply cyclic stretch to cultured human RPE cells (ARPE-19) at 0.33 Hz with 20% elongation for 0 h, 6 h or 24 h. The cells were stretched alone or pre-treated with Cytochalasin D. The redistribution of the actin cytoskeleton was evaluated using phalloidin immunofluorescence staining. The protein expression levels of IL-8 and JNK in the RPE cells were determined via Western blotting.ResultsThe cells in the control groups displayed abundant and uniform phalloidin staining. After exposure to mechanical stretch for 24 h, phalloidin staining revealed an unclear and irregular actin cytoskeleton. In all Cytochalasin D-treated cells, the shrinkage and disruption of the cytoskeletal structure was observed regardless of mechanical stress. The stimulation of the RPE cells with cyclic stretch alone did not induce a significant increase in IL-8 expression and JNK phosphorylation levels, which were similar to those of the control groups. After pre-treatment with Cytochalasin D alone, IL-8 expression and JNK phosphorylation levels were not significantly different at 6 h but were significantly increased by approximately 1.2-fold (1.18 ± 0.05; P<0.01) and 3.0-fold (3.01 ± 0.02; P<0.01) at 24 h, respectively. After the pre-incubation of the RPE cells with Cytochalasin D followed by exposure to cyclic stretch, IL-8 expression and JNK phosphorylation levels increased by approximately 1.3-fold (1.31 ± 0.02; P<0.01) and 1.3-fold (1.31 ± 0.02; P<0.01) at 6 h, respectively, and by 1.7-fold (1.69 ± 0.06; P<0.01) and 3.2-fold (3.21 ± 0.12; P<0.01) at 24 h, respectively.ConclusionsThis study demonstrates that disruption of actin polymerization by cytochalasin D and mechanical stretch upregulates interleukin-8 expression and JNK phosphorylation levels in human RPE cells, which indicates that the integrity of the actin cytoskeleton may play important roles in the pro-inflammatory processes in RPE cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.