Carbon capture, utilization, and storage (CCUS) technology is considered an effective way to reduce greenhouse gases, such as carbon dioxide (CO2), which is significant for achieving carbon neutrality. Based on Derwent patent data, this paper explored the technology topics in CCUS patents by using the latent Dirichlet allocation (LDA) topic model to analyze technology’s hot topics and content evolution. Furthermore, the logistic model was used to fit the patent volume of the key CCUS technologies and predict the maturity and development trends of the key CCUS technologies to provide a reference for the future development of CCUS technology. We found that CCUS technology patents are gradually transforming to the application level, with increases in emerging fields, such as computer science. The main R&D institutes in the United States, Europe, Japan, Korea, and other countries are enterprises, while in China they are universities and research institutes. Hydride production, biological carbon sequestration, dynamic monitoring, geological utilization, geological storage, and CO2 mineralization are the six key technologies of CCUS. In addition, technologies such as hydride production, biological carbon sequestration, and dynamic monitoring have good development prospects, such as CCUS being coupled with hydrogen production to regenerate synthetic methane and CCUS being coupled with biomass to build a dynamic monitoring and safety system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.