In this study, a three-dimensional (3D) numerical simulation model for the flow and heat transfer in a side-blown aluminum annealing furnace (SAAF) is successfully established. Based on the vivid evolutions of the flow field and temperature field, it is confirmed that multiple vortices among the radially distributed nozzles play a key role in reducing the interior flow resistance of the SAAF. The simulated flow distribution agrees remarkably well with the on-site experimental data, which reveals that the model based on the multireference frame method is suitable for describing the 3D fluid-solid coupling heat transfer process inside the SAAF. In addition, to resolve the appreciably uneven temperature distribution in the SAAF, a scheme of guide plate arrangement around the fan is developed to adjust the flow pattern and facilitate the reasonable allocation of the nozzle flow. The standard deviation and the coefficient of variation are obviously declined (∼ 12%) for both low and standard airspeeds, thereby suggesting that the uniformity of the nozzle flow distribution are expectedly improved. The progress made so far is a substantial step toward achieving high quality, high efficiency and energy savings in aluminum production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.