It is generally believed that studies of liquid water using the generalized gradient approximation to density functional theory require dispersion corrections in order to obtain reasonably accurate structural and dynamical properties. Here, we report on an ab initio molecular dynamics study of water in the isothermal-isobaric ensemble using a converged discrete variable representation basis set and an empirical dispersion correction due to Grimme [J. Comp. Chem. 27, 1787 (2006)]. At 300 K and an applied pressure of 1 bar, the density obtained without dispersion corrections is approximately 0.92 g/cm(3) while that obtained with dispersion corrections is 1.07 g/cm(3), indicating that the empirical dispersion correction overestimates the density by almost as much as it is underestimated without the correction for this converged basis. Radial distribution functions exhibit a loss of structure in the second solvation shell. Comparison of our results with other studies using the same empirical correction suggests the cause of the discrepancy: the Grimme dispersion correction is parameterized for use with a particular basis set; this parameterization is sensitive to this choice and, therefore, is not transferable to other basis sets.
Replacing rigid metal oxides with flexible alternatives as a next-generation transparent conductor is important for flexible optoelectronic devices. Recently, nanowire networks have emerged as a new type of transparent conductor and have attracted wide attention because of their all-solution-based process manufacturing and excellent flexibility. However, the intrinsic percolation characteristics of the network determine that its fine pattern behavior is very different from that of continuous films, which is a critical issue for their practical application in high-resolution devices. Herein, a simple optimization approach is proposed to address this issue through the architectural engineering of the nanowire network. The aligned and random silver nanowire networks are fabricated and compared in theory and experimentally. Remarkably, network performance can be notably improved with an aligned structure, which is helpful for external quantum efficiency and the luminance of quantum dot light-emitting diodes (QLEDs) when the network is applied as the bottom-transparent electrode. More importantly, the advantage introduced by network alignment is also of benefit to fine pattern performance, even when the pattern width is narrowed to 30 μm, which leads to improved luminescent properties and lower failure rates in fine QLED strip applications. This paradigm illuminates a strategy to optimize nanowire network based transparent conductors and can promote their practical application in high-definition flexible optoelectronic devices.
The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimising the adverse health effects on school children.
Solution‐processed metal nanowire networks have attracted substantial attention as clear transparent conductive electrodes (TCEs) to replace metal oxides for low‐cost and flexible touch panels and displays. While targeting photovoltaic applications, TCEs are expected to be more hazy for enhancing light absorption in the active layer, but are still required to retain high transmittance and low sheet resistance. Balancing these properties (haze, transmittance, and conductivity) in TCEs to realize high performance but high haze simultaneously is a challenge because they are mutually influenced. Here, by precisely tailoring the diameter of thick–long silver nanowires using rapid radial electrochemical etching, high hazy flexible TCEs are fabricated with high figure of merit of up to 741 (4 Ω sq−1 at 88.4% transmittance with haze of 13.3%), surpassing those of commercialized brittle hazy metal oxides and exhibiting superiority for photovoltaic applications. Laminating such TCEs onto the perovskite solar cells as top electrodes, the obtained semitransparent devices exhibit power efficiencies up to 16.03% and 11.12% when illuminated from the bottom and top sides, respectively, outperforming reported results based on similar device architecture. This study provides a simple strategy for flexible and hazy TCEs fabrication, which is compatible with mild solution‐processed photovoltaic devices, especially those containing heat‐sensitive or chemical‐sensitive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.