Extracting behavioral models of RRAM devices is challenging due to their unique “memory” behaviors and rapid developments, for which well-established modeling frameworks and systematic parameter extraction processes are not available. In this work, we propose a physics-informed recurrent neural network (PiRNN) methodology to generate behavioral models of RRAM devices from practical measurement/simulation data. The proposed framework can faithfully capture the evolution of internal state and its impacts on the output. A series of modifications informed by the RRAM device physics are proposed to enhance the modeling capabilities. The integration strategy of Verilog-A equivalent circuits, is also developed for compatibility with existing general-purpose circuit simulators. The Verilog-A model can be easily adopted into the SPICE-type simulator for the circuit design with a variable step that differs from the training process. Numerical experiments with real RRAM devices data demonstrate the feasibility and advantages of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.