Many inventory models with partial backordering assume that the backordered demand must be filled instantly after stockout restoration. In practice, however, the backordered customers may successively revisit the store because of the purchase delay behavior, producing a limited backorder demand rate and resulting in an extra inventory holding cost. Hence, in this paper we formulate the inventory model with partial backordering considering the purchase delay of the backordered customers and assuming that the backorder demand rate is proportional to the remaining backordered demand. Particularly, we model the problem by introducing a new inventory cost component of holding the backordered items, which has not been considered in the existing models. We propose an algorithm with a two-layer structure based on Lipschitz Optimization (LO) to minimize the total inventory cost. Numerical experiments show that the proposed algorithm outperforms two benchmarks in both optimality and efficiency. We also observe that the earlier the backordered customer revisits the store, the smaller the inventory cost and the fill rate are, but the longer the order cycle is. In addition, if the backordered customers revisit the store without too much delay, the basic EOQ with partial backordering approximates our model very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.